Non-clogging nozzle design with a very stable spray angle, particularly even liquid distribution and large free cross sections.

Applications:
Cleaning and washing processes, surface spraying, container cleaning, foam precipitation, degassing of liquids.

Series 490/491 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD).

Conversion formula for the above series: \(\dot{V}_2 = \dot{V}_1 \times \left(\frac{p_2}{p_1} \right)^{0.4} \) (≤ 10 bar)

### Code	Dimensions [mm]	Hex/Flats
CA | 1/8 BSPT 18.0 6.5 10.0 11 |
CC | 1/4 BSPT 22.0 10.0 13.0 14 |
CE | 3/8 BSPT 24.5 10.0 16.0 17 |
CG | 1/2 BSPT 32.5 13.0 21.0 22 |
AK | 3/4 BSPP 42.0 15.0 22.0 27 |
AM | 1 BSPP 56.0 17.0 40.0 35 |

Subject to technical modifications. Please enquire about the exact dimensions if the installation situation is critical.

Materials on request
Axial-flow full cone nozzles
Series 490/491

<table>
<thead>
<tr>
<th>Spray angle</th>
<th>Ordering no.</th>
<th>Code</th>
<th>B</th>
<th>E</th>
<th>(V) [l/min]</th>
<th>(p) [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°</td>
<td>490.644</td>
<td>CE</td>
<td>2.30</td>
<td>2.30</td>
<td>60.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>490.646</td>
<td>CE</td>
<td>2.75</td>
<td>2.75</td>
<td>60.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>490.647</td>
<td>CE</td>
<td>3.20</td>
<td>3.20</td>
<td>60.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>490.648</td>
<td>CE</td>
<td>3.70</td>
<td>3.70</td>
<td>60.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>490.649</td>
<td>CE</td>
<td>4.20</td>
<td>4.20</td>
<td>60.00</td>
<td>11.00</td>
</tr>
</tbody>
</table>

Conversion formula for the above series:

\[\dot{V}_2 = \dot{V}_1 \cdot \left(\frac{p_2}{p_1} \right)^{0.4} \]

\((\leq 10 \text{ bar}) \)

B = bore diameter
E = narrowest free cross section
V = flow rate
p = pressure

Materials on request

Conversion for the above series:
\[\dot{V}_2 = \dot{V}_1 \cdot \left(\frac{p_2}{p_1} \right)^{0.4} \]
\((\leq 10 \text{ bar})\)