VGBE

WS FLUE GAS CLEANING 2023

50

40

20

PRAGUE / CZECH REPUBLIC

LECHLER GMBH – GERMANY 2023

Modernization and Process Optimization of Wet Flue Gas Desulphurization

Absorbers by using new developed spray components

Substantial preconditions to reduce systems energy consumption, operating costs and maintenance in line with keeping new increasingly stringent regulatory limits is to provide maximum availability and most optimized reactive surface of the scrubber suspension. Another is to support most uniform gas distribution over the scrubber cross section.

The following paper describe how to achieve and how to increase separation results by setting up targetdeveloped spray components. The components further enable reductions of pressure drop in the system while using trays and suggest possibilities to equip critical scrubber sections with variants for an enhanced operational reliability and highly reduced maintenance and operation costs.

The TwinAbsorbPro® series comes in as well as valuable additional tool in combination with solutions for optimized dust separation.

LECHLER GMBH 2023

EVERY SCRUBBER SYSTEM CAN BE IMPROVED

IF: YOU CAN BALANCE THE GAS DISTRIBUTION

IF: YOU CAN INCREASE THE REACTIVE SURFACE OF THE INJECTED LIQUID

The injected spray influence highly the process performance due to several features of sprays and nozzles.

Experience and knowledge about these features are an essential base to engineer customized spray solutions.

The presented spray solutions allow to follow stricter regulations coming with BREF limitations in line with the necessary need for operational cost reduction.

ENGINEERING YOUR SPRAY SOLUTION

Small component – high influence on:

- Increase of relative velocity
- Support of even gas distribution
- Increase of turbulence due to counter rotating sprays

Tropfen-Sprühstrahlen (blau) drallbehaftet

TwinAbsorb

Gas distribution

Standard

Small component – high influence on:

- Increase of specific reactive surface
- Reactivity of injected absorbent
- Multiplying collision areas by using equilateral spray cones

ENGINEERING YOUR SPRAY SOLUTION

Small component – but high influence on:

Pressure drop

- Assist reduction of pressure drop when using a **tray**.

- Up to 0,2 - 1 mbar savings per spray bank are possible

- Up to 20-100 ++ KW (el.) savings in electricity demand for ID fan are possible

Small component – high influence on:

NEW TwinAbsorbPro[©] patented

Small component – high influence on:

NEW TwinAbsorbPro[©] patented

Efficiency & Maintenance

ENGINEERING YOUR SPRAY SOLUTION

PROJECT SAMPLE WASTE INCINERATOR PLANT

MVV Mannheim

Branch:

WIP

Application: SO₂ Removal

Product: TwinAbsorbPRO[®]

MV

PROJECT SAMPLE WASTE INCINERATOR PLANT

Before

11

PROJECT SAMPLE WASTE INCINERATOR PLANT

After

Modernization and Process Optimization of Wet Flue Gas Desulphurization

Absorbers by using new developed spray components

RETROFIT MVV MANNHEIM

CO-AUDITOR MVV Mannheim Dr.-Ing.Thomas Behrendt

Dr.-Ing. Thomas Behrendt

MVV Energie AG

Luisenring 49 68159 Mannheim Thomas.Behrendt@mvv.de Mobile +49 151 25099142

> We inspire with energy

MHKW Mannheim, energy from waste

- Waste throughput 700.000 t/a
- Treatment of sewage sludge 135.000 t/a
- Waste incineration since 1965
- Adaptation of the flue gas cleaning plant 1 to the new requirements through the commissioning of the new sewage sludge treatment plant
- Flue gas volume flow: +20 %
- Raw gas concentration SO_2 : +30 %

→ Upgrading the SO₂-scrubber

Overview of the wet flue gas cleaning plant

Upgrading the SO₂-scrubber of the flue gas cleaning plant 1

SO₂-concentration after the SO₂-scrubber

flue gas cleaning plant 1 green flue gas cleaning plant 2 red

identical design of the flue gas cleaning plants 1 and 2

same composition and volume flow of the flue gas (flue gas collecting duct in front of the flue gas cleaning plants 1 and 2)

MVV Energie AG

Luisenring 49 68159 Mannheim

www.mvv.de <u>Thomas.Behrendt@mvv.de</u> Mobile +49 151 25099142

A company in the Rhine-Neckar metropolitan region

Modernization and Process Optimization of Wet Flue Gas Desulphurization

Absorbers by using new developed spray components

RETROFIT TPP BELCHATOW

CO-AUDITOR RAFAKO S.A. Dip.-Ing. Jerzy Mazurek

Genesis of the project: Increase in sulphur content in fuel due to reduction of SO₂ emission limit (AEL)

TARGET:

	AEL [mg/Nm ³]		Eff. SO ₂ removal	
Before	200		98,0%	
After	130	-35%	98,7%	+0,7%

2021: Start of Implementation Best Available Techniques Reference Document for the Large Combustion Plants (BAT Conclusion)

Technology used for increase efficiency SO₂ removal

Unit No	Year of start FGD operation (basic project)	Technology for increase eff. SO ₂ removal		Date of	
Unit Power Absorber diameter		New concept and new nozzles for spray level	Additional used technology	commissioning after modernization	
7 / 390 MW / 15,7 m	2003	TwinAbsorb-EH, -H	FGD_2.0 (RAFAKO) Research project	12.2017	
9 / 390 MW / 15,7 m	2003	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	09.2020	
10 / 390 MW / 18,7 m	1994	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	09.2020	
5 / 380 MW / 15,7 m	2000	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	12.2020	
6 / 394 MW / 15,7 m	2000	TwinAbsorb -EV, -H, -EH	FGD_2.0 (RAFAKO)	12.2020	
12 / 390 MW /18,7 m	1996	TwinAbsorb-EH, -H TwinAbsorbPRO	FGD_2.0 (RAFAKO)	10.2021	
11 / 390 MW / 18,7 m	1996	TwinAbsorb-EH, -H TwinAbsorbPRO	FGD_2.0 (RAFAKO)	10.2021	
3 / 380 MW/ 17,0 m	2007	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	11.2021	
8 / 390 MW / 18,7 m	1995	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	11.2021	
4 / 380 MW / 17,0 m	2007	TwinAbsorb-EV, -H, -EH	FGD_2.0 (RAFAKO)	12.2021	
14 / 858 M / 2x16,0m	2011	TwinAbsorb-EH, -H TwinAbsorbPRO	-	Planned 12.2023	

Spray levels modernization concept Example for unit 7 Generally: Individual design for each absorber

Quantity of nozzles per one level: 120 pc Types of nozzle: 2 Nozzle capacity: 1583 l/min Connection type: lamination DN125 Quantity of nozzles per one level: 172 pc Types of nozzle: 5 Nozzle capacity: 1105 l/min Connection type: Victaulic, DN100 Spray levels modernization concept and FGD_2.0 process technology Photos for unit 7 after modernization

Visualization of the effects of absorber modernization on the example of unit 7. Synergistic effect of using new nozzles and FGD_2.0 process technology. Developed on the basis of data from field equipment (continuous measurements of gas parameters)

3D diagram of SO_2 concentration in the clean gas at the chimney relative to the raw flue gas volume flow and SO_2 concentration at the FGD inlet for <u>3 spray banks in operation</u>.

Developed on the basis of the analysis of data from 1 full month of work **before** and **after** modernization (sampling period: 60s).

Visualization of the effects of absorber modernization on the example of unit 7. Synergistic effect of using new nozzles and FGD_2.0 process technology. Developed on the basis of data from field equipment (continuous measurements of gas parameters)

3D diagram of SO₂ concentration in the clean gas at the chimney relative to the raw flue gas volume flow and SO₂ concentration at the FGD inlet for <u>**3** spray banks in operation</u>.

Developed on the basis of the analysis of data from 1 full month of work before and after modernization (sampling period: 60s).

Comparison of the results of work from the monthly period before and after modernization allows us to conclude that the outlet concentration of SO₂, and thus SO₂ emissions, has been reduced by over 50%.

Results of warranty measurements made by an independent measuring company

Unit	Date of warranty measurements	SO ₂ inlet [mg/Nm ³]	SO ₂ outlet [mg/Nm³]	SO ₂ removal efficiency [%]
7	21.04 - 23.04.2020	9396	68	99,3
9	17.05 - 21.05.2021	7188	50	99,3
10	17.05 - 21.05.2021	7485	79	98,9
6	27.09 - 01.10.2021	8017	49	99,4
12	05.12 - 09.12.2021	9928	82	99,2
11	05.12 - 09.12.2021	9028	81	99,1
3	08.06 - 09.06.2022	9152	11 *)	99,9
4	08.06 - 09.06.2022	9458	120	98,7
5	10.08 - 11.08.2022	8328	84	99,0
8	05.10 - 06.10.2022	9324	107	98,9
	on average	8730	73	99,2

The measurements were made at full power of the unit and all spray levels in operation (stable operation minimum 4 hours). Measurement based on measuring grids (multi-point measurement).

*) Result for high pH level and high organic acid concentration.

CONCLUSION:

After modernization, the absorbers achieved the assumed ability to maintain the outlet concentration of SO₂ below 130 mg/Nm³ for SO₂ concentrations at the inlet up to 10000 mg/Nm³ as a function of the pH of the absorber suspension and the volume flow of the raw flue gas.

Special solutions for upgrade wet FGD systems

SKETCH	TECHNOLOGY	COMPANY
N: 35° O: 55° S: 55° ± 5° W: 55°		LECHLER GmbH
O S N W	TwinAbsorbPRO	For details please contact with: Thomas Schröder T: +49 (0) 7123 962- 315 M: +49 (0) 172 720 1993 E: Thomas.Schroeder@lechler.de
	FGD_2.0 process technology	RAFAKO S.A. For details please contact with: Jerzy Mazurek T: +48 32 410 1394 M: +48 602 760 006 E: Jerzy.Mazurek@rafako.com.pl

Modernization and Process Optimization of Wet Flue Gas Desulphurization

Absorbers by using new developed spray components

RETROFIT TPP MARITSA EAST III

CO-AUDITOR STEINMÜLLER ENGINEERING GMBH Dr.-Ing. Stefan Binkowski

Upgrade of 2 SO₂ scrubbers in Maritsa East 3 power station

Rely on good experience with

The Engineers Company

© Steinmüller Engineering GmbH. Publication and copying of this document without consent of SE is not allowed

Description of Power Plant

- Maritsa East 3 Power Plant (operated by Contour Global in Bulgaria)
- 908 MWe (total) lignite-fired power plant with 4 x 227 MWe units
- Two wet-limestone FGDs

Characteristic	Unit	Value
Flue gas flow rate (wet)	m ³ /h (Normalized, wet, act O2)	3 223 451.19
Flow rate (dry)	m ³ /h (Normalized, dry, act O2)	2 542 107.24
SO ₂	mg/m ³ (Normalized, dry)	15 415.57
SO ₂ @ 6% O ₂	mg/m ³ (Normalized, dry)	18 500
Dust @ 6% O ₂	mg/mg (Normalized, dry)	50
N ₂ + Ar content	Vol. %, dry	79.9
O ₂ content	Vol. %, dry	8.5
CO ₂ content	Vol. %, dry	11.0
H ₂ O content	Vol. %, wet	21.1
Temperature	°C	179
Density	kg/m ³ (Normalized, wet)	1.236
Suspension flow each spray bank	m³/h	12.000
Spray banks per absorber	-	6
		(spraybank 1-5 with 50:50 up:down nozzles
Limestone suspension feeding	-	Directly into absorber

HI GROUP

steinmüller

engineering

Optimisation measures

- Increase of SO₂ removal efficiency by > 2 % (to min 97 %)
- Combination of 3 upgrades:
 - 1. Limestone dosing directly into recirculation lines
 - 2. Implementation of a tray level below the first spray bank
 - 3. Replacement of spray nozzles at spray level 1-5

IHI GROUP

engineering

Results:

• Improvements by tray installation:

- Homogenization of the flue gas flow through the complete absorber
- Increase of SO2 removal efficiency
 Better utilization of limestone
- Improvements by feeding limestone suspension into recirculation lines:
 - Direct contact of the absorbens with the flue gas \rightarrow better utilization of the absorbent
- Improvements by changing the spray nozzles:
 - − 70:30 ratio (up:down) increases the amount of upwards sprayed droplets and thus the reaction time with the flue gas → improvement of SO2 efficiency
 - Decrease of pressure drop of the complete system due to higher portion of upwards directed droplets
 - Less abrasion of absorber wall and support beams due to asymmetric spray cones

steinmüller

GROUP

Modernization and Process Optimization of Wet Flue Gas Desulphurization

Absorbers by using new developed spray components

RETROFIT TPP POLAND

CO-AUDITOR ANDRITZ GRAZ-RAABA Dipl.-Ing. Michael Kramer

ANDRITZ GROUP DUST SEPARATION

MICHAEL KRAMER

2023

ENGINEERED SUCCESS

START SITUATION

- U-shaped scrubber
- Packing in co-current part
- Volume flow 2.8 million Nm³/h
- Hard coal / biomass
- Dust inlet: ~ 75 mg/Nm³, tr, 6% O2
- Dust clean gas: ~ 13.5 mg/Nm³, tr, 6% O2
- GAVO in front of scrubber (with Scavenging Fan)
- Bypass flap in front of scrubber

DUST SEPARATION - EXAMPLES

Factors influencing dust separation:

- KGV ratio on scrubber entry
- Dust content at scrubber inlet
- Number of spray levels (I/g)
- Pressure at nozzle
- Spray pattern of nozzles, nozzle configuration (hollow cone/full cone) secondary atomization)

•

Conclusion:

Dust separation can be very different

OBJECTIVE

Measures

- Conversion to spray scrubber concept in combination with ANDRITZ patented REAplus System
- Total 3 spray level, 1 REAplus
- Supply of the 3 spray levels by 1 supply line
- Significant influence on the nozzle inlet pressure when different number of pumps in operation
- Special nozzle concept with maximum secondary atomization (exclusively hollow cone nozzles with variable spray angle)
- Nozzle pressures at 4 pump operation: 0.96 to 1.4 bar or ~ 0.7 to 1.15 bar at 3-pump operation (depending on spray level)

DUST SEPARATION – AFTER

Results:

- Raw gas dust content has been lowered
- Separation efficiency has been increased (nozzle concept, spray levels, REAplus)
- Gas dust content reached < 8 mg/Nm³, despite leaks via GAVO and bypass flap

LEGAL DISCLAIMER

All data, information, statements, photographs, and graphic illustrations contained in this presentation are without any obligation to the publisher and raise no liabilities to ANDRITZ AG or any affiliated companies, nor shall the contents in this presentation form part of any sales contracts, which June be concluded between ANDRITZ GROUP companies and purchasers of equipment and/or systems referred to herein.

© ANDRITZ AG 2023. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws.

THANK YOU VERY MUCH FOR ATTENTION

Lechler GmbH Thomas Schröder Key Account Manager General Industries / FGD +49-7123 962 315 +49-172 720 1993 Thomas.Schroeder@lechler.de

www.lechler.com

FOR MORE INFORMATION PLEASE CONTACT US WE WILL BE GLAD TO ASSIST YOU

Lechler GmbH Thomas Schröder Key Account Manager General Industries / FGD +49-7123 962 315 +49-172 720 1993 Thomas.Schroeder@lechler.de

www.lechler.com

AUDITOR: THOMAS SCHRÖDER LECHLER GMBH, METZINGEN / GERMANY **CO-AUDITOR:** THOMAS BEHRENDT **MVV ENERGIE AG MANNHEIM / GERMANY CO-AUDITOR:** JERZY MAZUREK RAFAKO S.A. / POLAND **CO-AUDITOR:** MICHAEL KRAMER ANDRITZ AG GRAZ-RAABA / AUSTRIA STEINMÜLLER ENGINEERING GMBH GUMMERSBACH / GERMANY **CO-AUDITOR:** STEFAN BINKOWSKI STEINMÜLLER ENGINEERING - GUMMERSBACH SOURCE TRAY:

LECHLER GMBH 2023

THIS PRESENTATION AND THE ABSTRACTS FROM STUDIES CONTAINED WITHIN ARE THE PROPERTY OF LECHER GMBH AND MUST BE TREATED AS STRICTLY CONFIDENTIAL. ANY TRANSFER OF MATERIAL TO THIRD PARTIES IS PERMITTED ONLY WITH THE PRIOR EXPLICIT CONSENT OF LECHLER GMBH.

LECHLER GMBH 2023