


# >>> PRECISION SPRAY NOZZLES AND ENGINEERED SOLUTIONS FOR THE CHEMICAL INDUSTRY



## PROCESS OPTIMIZATION WITH NOZZLE TECHNOLOGY

On the one hand every company needs to develop and constantly optimize its production processes. In automated systems, even minor discrepancies can provide optimization opportunities. On the other side processes in the chemical industry are extremely complex and mutually dependent, each adjustment extends far beyond its immediate scope. That's why for over 140 years, Lechler provides nozzle and spray technology that always involves the understanding of all the processes involved.



Later, our company's focus shifted from chemical production to application and atomization of liquids. In 1961, all chemical products were finally combined in a separate company. But nevertheless, chemistry kept playing a major role in our company.



Today Lechler offers a wide product range for the optimization of technical processes. Throughout our history, chemistry has played a major role in our company. Over the course of many decades, this gave rise to a unique understanding of spraying and atomization processes.

We are familiar with a wide range of applications at various pressures, temperatures and atmospheres. The following pages will provide you with several examples of this.

1879



Company founded by Paul Lechler

1893



Patent for liquid atomization

1962



Sales offices set up in Germany

1978



Expansion to the USA and then to other countries

## COMPETENCE – THE ADVANTAGE OF MULTIPLE PERSPECTIVES





## **CUSTOMER ADVANTAGES**



Wide product range



Service



Experience



**Custom made** solutions



Process optimization



Process reliability



Cost savings

## Maximum precision and reliably reproducible spray

patterns – that's what Lechler nozzles and spray solutions stand for. Today we not only offer a unique selection of quickly available standard nozzles, but are also prepared, to develop individual solutions customized to your needs. We would also be very pleased to advise you in person about how you can make your own processes even more efficient.

## Our competence

Lechler is world leader in nozzle and spraying technology. Our products and solutions are used worldwide in an extremely wide range of sectors – including the chemical and process industry.

Our application engineers are familiar with practical use from many successful applications, and are therefore competent partners in the development and realization of exemplary solutions.

This know-how combined with our sophisticated technical achievements in research, design and production, provides you with the security needed for safe and reliable plant operation.

Take us at our word and let's discuss your process needs in an obligation-free consultation.

Content **Page Engineered solutions** for process solutions 23 Nozzle lances and injectors 24-27 Lechler pump and control skids 28-29 Lechler droplet separators 30-33 CFD analysis Measuring technology 37 **Precision nozzles** 38 Cluster head nozzles Deflector-plate nozzle

1988



Environmental Technologies division founded

1995



Production, sales and administration are concentrated in Metzingen

2010



Expansion of production with new 13,000 m<sup>2</sup> production hall

2016



Opening of the ultra-modern Development and Technology Center in Metzingen



## LECHLER NOZZLES AND ENGINEERED SOLUTIONS – FROM THE WELL TO THE REFINERY

Whether pinpoint precision or broad coverage – spray solutions from Lechler perfectly support your processes at any point. Thanks to our profound process understanding Lechler is far more than just a nozzle manufacturer. In fact, we can help to optimize the efficiency of a large number of your processes. E.g. in the petrochemical industry from the well to the refinery.









## LECHLER NOZZLES AND ENGINEERED SOLUTIONS – AT HOME ALONG THE ENTIRE PROCESS LINE

Intense heat, high pressure, corrosive agents – every aspect of our nozzles has to be well defined right from the beginning in order to maintain the ultimate precision. This begins with the internal dimensions and doesn't end at the choice of the material. After the design phase every nozzle is rigorously examined in our test facilities. This way, we can ensure that the spray patterns of our nozzles match perfectly the needs of your processes.







## THIS IS WHERE YOU FIND YOUR ANSWER

The variety of different products synthesized and processed by the chemical industry is enormous. The same is true for the involved processes. Most of them are widely used and well understood. Others were specially developed and require extreme ambient conditions, occasionally customized to single reaction vessels.

Lechler supplies you in both areas with state-of-the-art nozzles and spray technologies.



For large industry framework conditions special engineered soultions are necessary. That's why we also present to you additional Lechler customized products and solutions that we make only to order to meet the special needs of the chemical and petrochemical industry, e.g. pump and control skid units, lances, special nozzles, gas cooling and conditioning systems, droplet separators and more. If you can't find what you're looking for, don't hesitate to contact us.

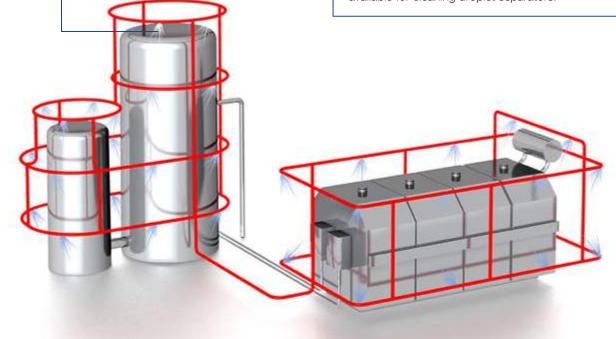
We would be happy to examine the possibilities available to us for developing the optimum atomization nozzle to suit your needs – custom made and in close collaboration with you. Please note the production related delivery times and costs for the nozzles presented here.

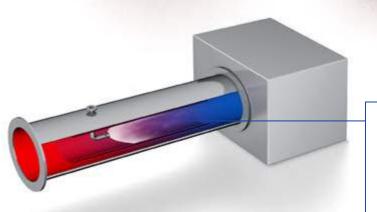
- Customized products and solutions
- Tailored to your needs
- Extensive consultation
- Individual design and process support

For most applications, our precision spray nozzles will provide excellent results

These parts have not only been meticulously designed but also have stood the test of time. Thanks to large-volume production, they are readily available at a reasonable price for the various applications in chemical-related applications in this brochure you'll find our most commonly used products.

- Thousands of standardized nozzles
- Tried and tested
- Great value for money
- Short delivery time


## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

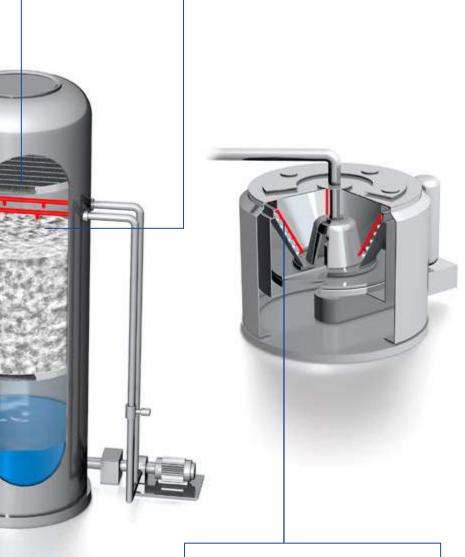

### Tank sprinklers and fire protection

For cooling and sprinkling tanks and systems, it is extremely important to spray the entire object with water on all sides or to provide an even water film on the object. The narrowest cross section of the nozzles should be  $\geq 6$  mm (DIN 14495). **Tongue-type nozzles** and **full cone nozzles** are frequently used.

#### **Droplet separators**

Droplets can be carried along in the gas flow. Lechler **droplet separators** remove droplets from the gas flow in order to prevent down-stream measuring devices from being affected. Special **full cone nozzles** are available for cleaning droplet separators.






### Gas cooling (Quenching)

In gas cooling, a liquid is added via nozzles that, under some circumstances, evaporates completely and thereby absorbs the thermal energy of the gas. Complete evaporation requires very fine droplets which can be produced with **hollow cone** or **twin-fluid nozzles**.

## Absorption (Gas washing)

If the waste gas is to undergo absorption, Lechler full cone, hollow cone, or cluster nozzles are used. It is of crucial importance here to create a large specific reaction surface. The efficiency of the process can be decisively enhanced by making the right nozzle selection and having an optimum nozzle arrangement.



### Material separation in centrifuges

Centrifuges are used to separate materials. Full cone and flat fan nozzles are used for this purpose to spray water on and wash out the material that is to be removed.

## **Examples** engineered solutions

### **Droplet separators**



- Arrest finest droplets  $(<10 \mu m)$
- Little pressure loss
- For high flow rates

#### Nozzle lances and injectors

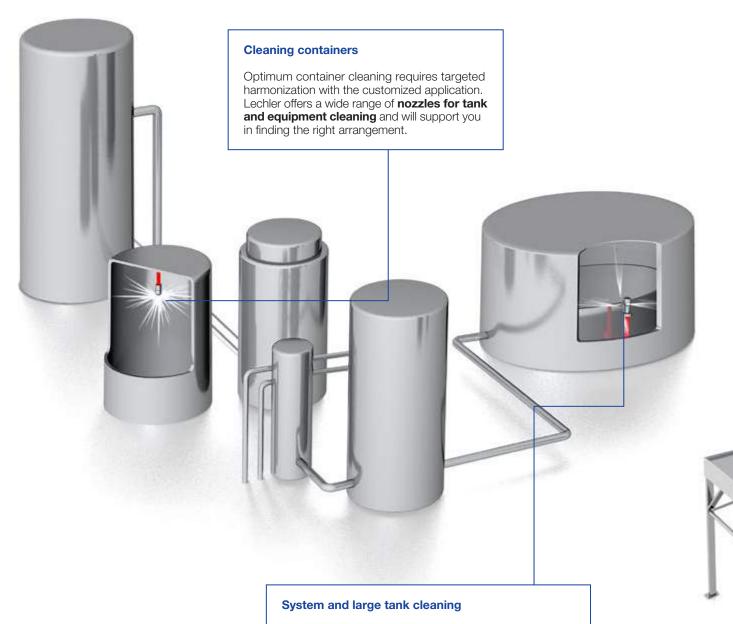


- Optimal spray placement
- ☐ Individual adapted
- Several options

## **Examples** spray nozzle solutions

### Full cone nozzles - series 490




- Non-clogging design
- Stable spray angle
- Particularly even spray

### Twin-fluid nozzles



- Very fine droplets■ Smallest flow rates■ Atomizing viscous

## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY



**High impact tank cleaning machines** can be used in this application. These traverse a precisely defined path with **gear-controlled solid stream nozzles**. This gives them a great range. In smaller containers and systems, the precision jets can remove even persistent dirt.

## **Examples** engineered solutions

#### **Tank lances**



- Fully customized tank lance
- Different materials ■ Different connection types

#### **Spray headers**



- Fully customized spray headers
- Different materials ■ Twin-fluid nozzles possible

### Nozzles for air cooling and humidification

The thermodynamic processes of evaporation are normally applied in air cooling and humidification. This requires fine droplets that are injected directly into the air flow by hollow cone or cluster nozzles. Producing the suitable droplet size and even distribution over the intake channel are particularly important here.



## **Examples** spray nozzle solutions

High impact tank cleaning machine series 5TA/5TB/5TM



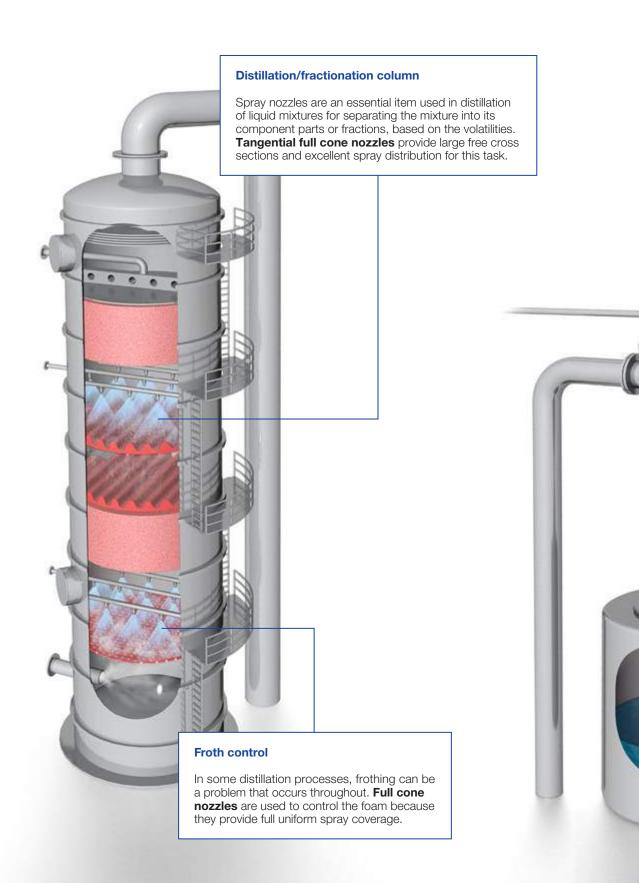
- Powerful solid jets –
- highest impact

  For persistent soil

  Robust and proven

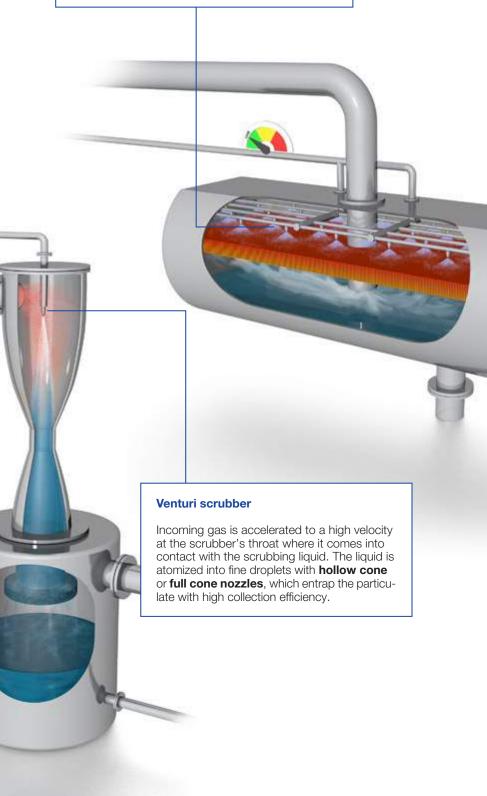
## Free spinning tank cleaning nozzles -




- Popular and proven design
- Cleaning with effective flat jetsVarious connection

### Cluster nozzles - series 502/503




- Full cone like distribution
- Small droplets

## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY



### Steam condenser sprays

These types of heat exchangers convert steam from its gaseous state to a liquid state by using full **cone nozzles**. These nozzles provide good spray coverage for the large area with the greatest pump efficiency.



## **Examples** engineered solutions

### Nozzle lances and injectors



- Optimal spray placement
- Individual adapted
- Several options

### Pump and control skid units

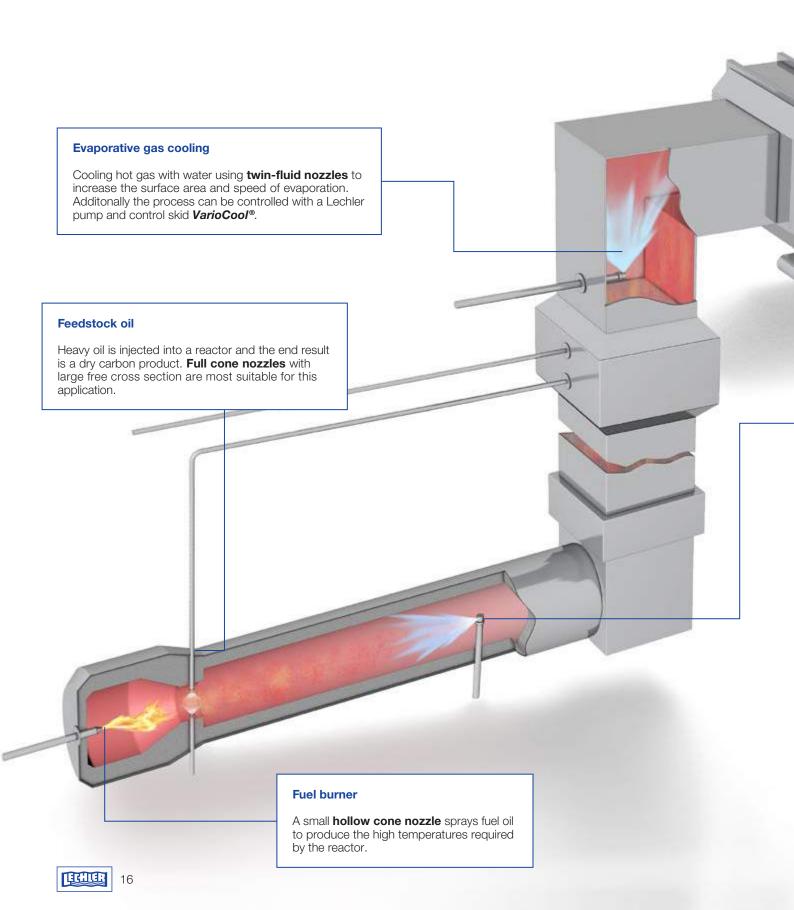


- High-quality
  - components Tested quality
- Perfectly tailored solution

## **Examples** spray nozzle solutions

#### Tangential full cone nozzles series 422/423




- No swirl insert
- Non-clogging■ Stable spray angles

### Full cone nozzles - series 403/405



- High flow rates
- Even spray
- Big droplets

## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY





## **Examples** engineered solutions

### Nozzle lances and injectors



- Optimal spray placement
- İndividual adapted
- Several options

### Pump and control skid units



- High-quality
- components Tested quality
- Perfectly tailored solution

## **Examples** spray nozzle solutions

#### Hollow cone nozzles series 214/216/218



- Small droplets
- Low flow rates

### Twin-fluid nozzles – series 170/180



- Efficient atomization
- Extremely fine
- Large free cross

### Twin-fluid nozzles - VarioJet®



- Internal mixingInnovative designVery fine droplet spectrum

## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

#### Particulate washing

An electrostatic precipitator (ESP) is a filtration device that removes fine particles from a flowing gas using the force of electrostatic charge minimally impeding the flow of gases through the unit. **Full cone nozzles** are used to wash the collected particulate from the collecting tube or plate.



At the bottom of the wet ESP, above the gas distribution plates **hollow cone** and **full cone nozzles** are used in the vessel for pre-cleaning, gas cooling, scrubbing and particulate removal.

### Water washing of salts

These injectors use full nozzles, which are used to scrub salt-forming contaminants from preflash and atmospheric tower overhead systems before they react and cause corrosion.

## Examples engineered solutions

### **Droplet separators**



- Arrest finest droplets (<10µm)
- Little pressure loss
  For high flow rates

### **Nozzle lances and injectors**



- Optimal spray placement
- ☐ Individual adapted
- Several options

#### **Spray headers**

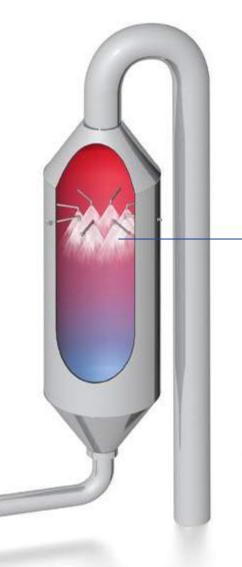


- Fully customized spray headers
- Different materialsTwin-fluid nozzles possible

## **Examples** spray nozzle solutions

### Full cone nozzles - series 490



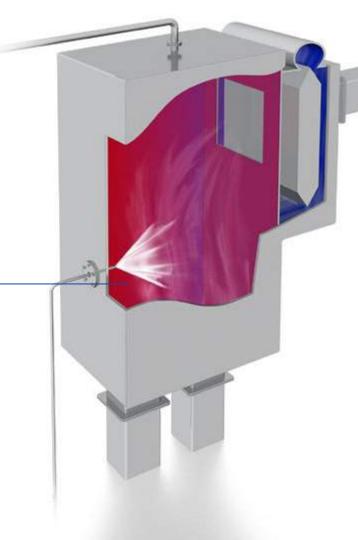

- Non-clogging design
- Stable spray angle
- Particularly even spray

#### Hollow cone nozzles series 214/216/218



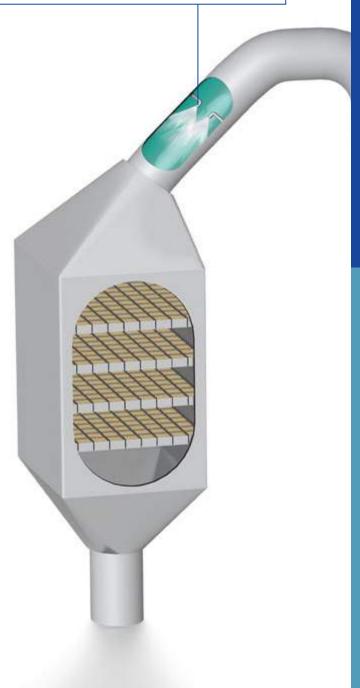
- Small droplets
- Low flow rates

## LECHLER NOZZLES AND ENGINEERED SOLUTIONS ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY




### Gas cooling tower

Precise cooling and conditioning of hot flue gases create stable outlet conditions for the safe and efficient operation of downstream plant components. Lechler is offering a wide range of **engineered solutions** to controll the outlet conditions of a gas cooling tower.


### **SNCR NOx reduction**

The selective non-catalytic reduction (SNCR) is an industrial technique for NOx reduction. **Twin-fluid or flat fan nozzle lances** spray fine droplets of urea or aqueous ammonia directly into a furnace.



## **NOx reduction with SCR**

With the selective catalytic reaction (SCR), achieving a high separation efficiency is possible only with the aid of a catalyst. Such a solution requires special precautions to keep the efficiency high and catalyst waste low. The reagent is added immediately before the catalyst using twin-fluid nozzle lances in a temperature window appropriate to the reaction.



## **Examples** engineered solutions

### Nozzle lances and injectors



- Optimal spray placement
- ☐ Individual adapted
- Many options

### Pump and control skid units



- High-quality components
- Tested quality
- Perfectly tailored solution

## **Examples** spray nozzle solutions

### Spillback nozzles



- Fine hollow cone
- Constant pressure■ No compressed air

### Twin-fluid nozzles – Laval



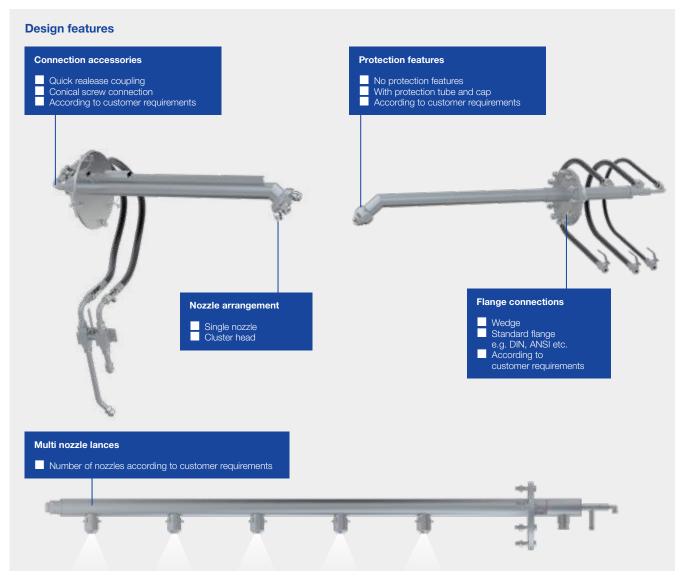
- Fine full cone atomization
- Droplet size and
- For high temperatures



# ENGINEERED SOLUTIONS FOR PROCESS SOLUTIONS: SOPHISTICATED SOLUTIONS FOR ADVANCED APPLICATIONS

If you are breaking new ground there is no standard solution available. But that's no problem. With our decadelong experience we are able to develop customized nozzles, spray systems and droplet separators on short hand. Let's talk and find your perfect solution.




# **Nozzle Lances** and Injectors





CFD Analysis and Testing Capabilities

## NOZZLE LANCES AND INJECTORS FOR HIGHEST SPRAY ACCURACY



### Lechler nozzle lances

ensure optimal spray placement and alignment in flue gas ducts. The choice of nozzles and the consideration of local conditions and process-related matters mean they can be individually adapted to the respective requirements.

The nozzles themselves have a low-maintenance design and can be quickly cleaned or exchanged with minimal effort

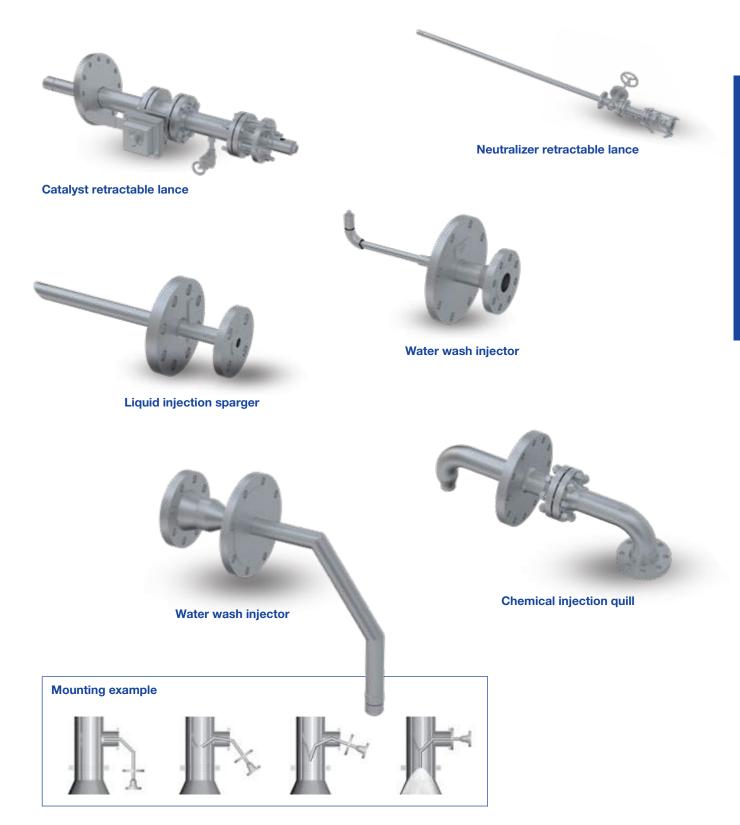
The robust, high-quality stainless steel construction ensures a high degree of functional reliability. Lances are available

in a variety of materials to suit specific process requirements.

Lechler nozzle lances are available with many options, including but not limited to:

- Protection tube to increase the service life in case of higher temperatures, high dust loads and aggressive gases, with barrier air as an option.
- Wedge flange, standard flange and special flange in accordance with customer requirements
- Guide rail to facilitate lance installation

- Shifting device to change the insertion length – with or without gastight sealing
- Expansion joint or stuffing box for expansion compensation at high temperatures
- Assembly connecting piece with flange connector for welding onto flue gas duct
- Further special customizations including wear protection, insulation, water cooling or coating
- Pre-assembled accessory kits for process media connections (e.g. quick release couplings, shut-off ball valves, strainers)


Lechler nozzle lances are manufactured in line with ultramodern production processes and according to the state of the art.

#### **Material**

Lances are manufactured from stainless steel (316/316L) as standard, but depending on requirements can also be made of alternative materials.

Accessories are available in galvanized steel or stainless steel and the hoses are available in rubber or stainless steel.

### Meeting customer requirements



## **Nozzle lances and injectors**

## Taylor made solutions

Lance injector type

## Material and test requirements and standards

## Connection type and features

## **Hydraulic**

## **Material Selection**

- Stainless Steel 316L
- Alloy 22
- PP, PVC
- And many more

## **Code Compliance**

- ASME B31.1 Power Piping code
- Metallic industrial piping: DIN EN 13480
- Unfired pressure vessels: DIN EN 13445
- ASME B31.3 Process Piping code
- Welder Performance Qualification Records per ASME BPVC section IX
- Qualification test of welders: DIN EN 287

## Twin-fluid air/liquid

## **Testing**

- ANSI and ASTM testing
- Non-destructive testing Penetrant testing: DIN EN ISO 3452
- Hardness
- Hydrostatic pressure test:
  Pressure Equipment Directive 2014/68/EU,
  DIN EN 13480-5 and DIN EN 13445-5
- Spray and flow testing
- Phase Doppler Anemometry (PDA) measurement system
- Magnetic particle inspection: DIN EN ISO 17638
- Positive Material Identification

## Flange connections

- Wedge
- Standard flange e.g. DIN, ANSI etc.
- Special flange according to customer specification

## **Additional features**

- Shifting device to change the insertion length – with or without gastight sealing
- Expansion joint or stuffing box for expansion compensation at high temperatures
- Pre-assembled accessory kits for process media connections (e.g. quick release couplings, shut-off ball valves, strainers)
- Further special customizations including wear protection, insulation, water cooling or coating
- Assembly connecting piece with flange connector for welding onto flue gas duct
- Guide rail to facilitate lance installation

### **Steam**

## Injector/lance arrangement

## Nozzle type

## **According** to customer requirements

- Spray directionInsertion length
- Single nozzleMulti-nozzle arrangementCluster head design

## **Nozzle type selection**

- Hydraulic nozzlesTwin-fluid nozzles
- Spillback nozzles



## **Spargers and Quills**

According to customer requirements



## PUMP AND CONTROL SKIDS A PERFECTLY TAILORED SOLUTION

Our pump and control skid units for regulating the flow rates of water and atomizing air are individual customerspecific solutions. Based on the requirements in each case, our first step is to design an overall concept and select the best components in order to create a perfectly tailored solution.

## First-class engineering

To perform our engineering, we determine all relevant parameters and define the plant's design. This includes determining the nominal widths and pressure levels as well as designing the pumps and control valves. We draw up the P&I diagram and make detailed equipment and signal lists as an option. Of course, the project is fully documented to ensure that technology and processes can be quickly traced even after years of use.

## **High-quality components**

An exact knowledge of the characteristic properties of our nozzles is key here. Only a complete system that is coordinated to how the nozzles function and operate will ensure smooth and economical operation of the gas cooling system. Unexpected failures can quickly lead to plant stoppages and costly production outages. This is why we fit our pump and control skid units with high-quality components from well-known manufacturers as standard and the most important functional components are even realized in redundant design.

The components are interconnected with pipes and mounted on a stable base frame with eyelets for crane transportation, at the same time ensuring that all components for operation and maintenance are arranged in an easily accessible manner.

## **Tested quality**

The design (e.g. dimensioning of nominal widths) and production are in line with the latest state of the art and comply with all relevant standards. They are equally subject to the Lechler quality management system certified to DIN EN ISO 9001, as is the final acceptance. Before delivery, the pump and control skid unit undergoes a pressure and tightness test and is checked by our experienced engineers. This will avoid any problems during commissioning.

## Control concept from the nozzle specialist

Numerous installations of *VarioCool®* systems, years of commissioning experience, plus expertise in nozzle technology all contribute to the constant improvement and optimization of Lechler control systems. By installing a control solution from Lechler you will benefit considerably from this wealth of experience. The flexible and fully automatic concept can be perfectly adapted to your process. You will have start-up and shut-down scenarios and dynamic process conditions under perfect control with our solution.

### Option packages for our VarioCool® pump and control skid

### Electrical wiring of the components:



#### allows

## Junction box

All components except the pump motors are wired to a junction box within the pump and control skid unit.

This assures that the customer has a central connection point for all electrical components and measuring devices for further processing in the higher-level control.

### **Control cabinet with complete PLC**

All components including the pumps are wired to a control cabinet. The control cabinet is integrated into the base frame of the pump and control skid unit.

The complete injection control is tested in accordance with valid electrical standards and regulations and allows all relevant process parameters to be visualized over a control panel on the control cabinet.

Specific configuration and extensive testing make commissioning much faster. Communication and the exchange of signals (setpoint, plant status, error messages) with the customer's logic system is carried out via PROFIBUS or PROFINET.

The control has several modes of operation such as automatic mode and manual mode for tests during plant downtimes. In the event of faults, our engineers can quickly perform a remote diagnosis via the installed modem without the need for an on-site visit.

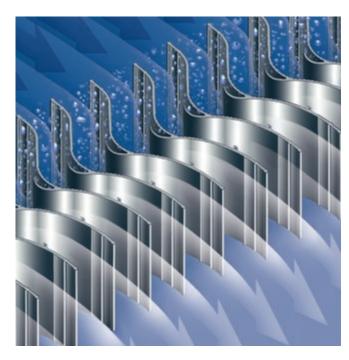
#### Talk to us

Customer requirements are different. Which is why standard solutions do not always make sense. Speak with us and let us work together to find the best solution for your purposes.



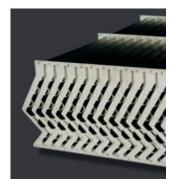
## DROPLET SEPARATORS WHEN PERFORMANCE COUNTS

Droplet separators have played a vital role in many process operations and gas washing plants as functional elements that protect downstream installation parts, increase product yield or reduce energy consumption. They are now becoming even more important due to increasingly stringent environmental protection regulations that require a drastic reduction in the residual pollutant content.


This makes it necessary to use high-performance drop-let separators which are capable of separating even the finest droplets with a size of less than 10 microns, while at the same time minimizing pressure losses. This task requires effective separation systems with compact dimensions that can deal with high flow rates.

When designing and planning droplet separators, it is necessary to have precise knowledge of the functional and performance data of the separation system, as well as an in-depth process understanding of the respective application.

Knowledge about droplet formation and droplet movement in a gas flow is essential to ensure fault-free operation of the droplet separator. For more than 100 years, we have worked on detection, measurement and definition of droplets. It is therefore not a coincidence that Lechler nozzles and Lechler droplet separators are now considered integral elements in process engineering.


Each installation requires a specific droplet separator design and construction. Design, construction and selection of the optimum Lechler droplet separators are based fully on your requirements, specifications and drawings. That is why we do not offer standard solutions, but customize systems individually for your specific needs

In order to guarantee accurate operation, materials must be used that are matched to the relevant variables of the installation in question. For this reason, Lechler offers a wide range of different materials – from stock.



#### The available materials include:

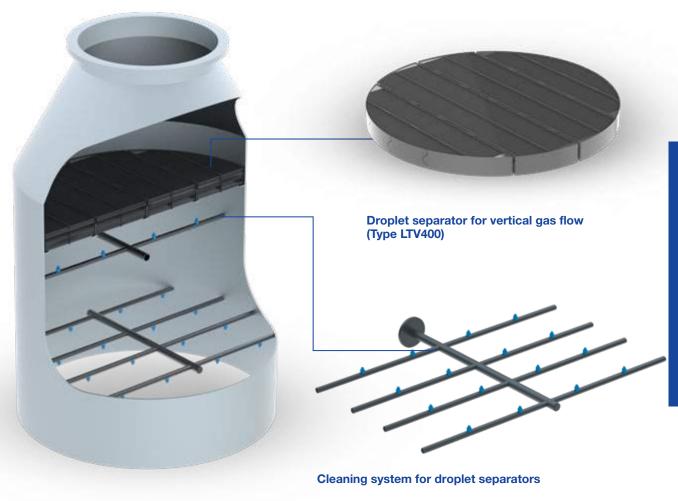
- Stainless steels in the grades 304 SS, 316L SS, 316Ti SS, 318LN SS, 904L SS, 254SMO SS as well as special alloys such as Alloy 22
- Plastics such as PP, PPTV, PE, PVDF







Do you know your process but are not sure which droplet separator is best suited for your purposes? No problem. Based on your individual requirements, we will choose from a finely graded range of vane profiles with single or multiple deflection.

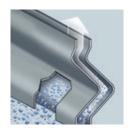

#### Lechler GmbH Droplet Separator Division

Charlottenburger Allee 7 52068 Aachen/Germany Phone: +49 241-463751-40 E-Mail:dropletseparator@lechler.de



## **Droplet separators**

## for vertical gas flow




In vane-type separators with vertical gas flow, the baffle vanes are arranged horizontally or at a slight horizontal angle. The liquid that is separated at the profile forms a film which drains downwards in the opposite direction to the gas flow. This liquid film interacts with the opposing gas flow. At the bottom end, larger droplets are formed from the liquid film which then fall down.

#### Reliable operation - even under tough conditions

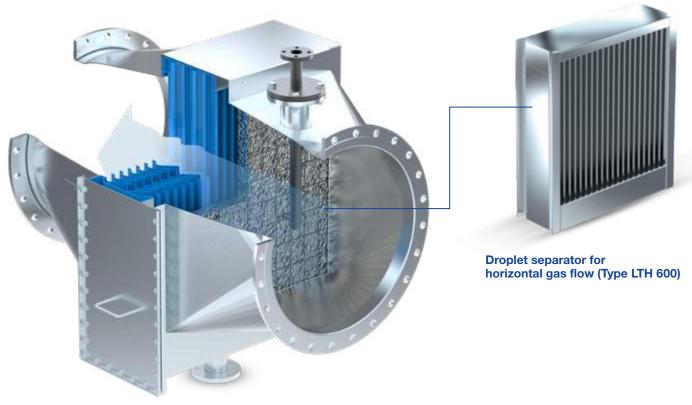
Lechler droplet separators are characterized by the optimized-flow design. However, if the gas flows are heavily loaded with dust, deposits can occur under unfavorable conditions which impair the efficiency of the droplet separators. In this case, an additional cleaning system helps to guarantee availability during continuous operation.

An arrangement that performs cyclical washing of the droplet separators with full-cone nozzles has proven particularly suitable for this. This allows you to increase functional reliability, avoid encrustations and also ensure that your plant operates with optimum efficiency over long periods.










Profile Geometry LTV 300

Profile Geometry LTV 400

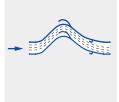
## **Droplet separators**

## for horizontal gas flow



Housing with droplet separator for horizontal gas flow (Type LTH 600) and agglomerator

horizontal gas flow use different design features for secondary separation than vertical systems. In


Vane-type separators for

vane-type separators for horizontal gas flow, the separation vanes are arranged vertically to the gas flow so that the liquid runs down the


baffles due to gravity. The creation of flow-calmed zones allows the liquid film to specifically drain in these areas without renewed contact with the gas flow. The fact that liquid run-off is assisted by the forces of gravity results in high-performance separation systems. Depending on the

separator design, particularly high flow rates are possible. The flow-optimized shape of the baffle vanes minimizes pressure losses. Based on your individual requirements, it is possible to choose from a finely-graded range of vane profiles with single or multiple deflection.



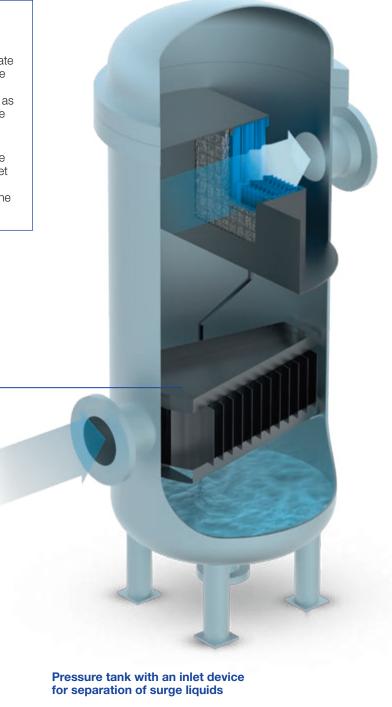




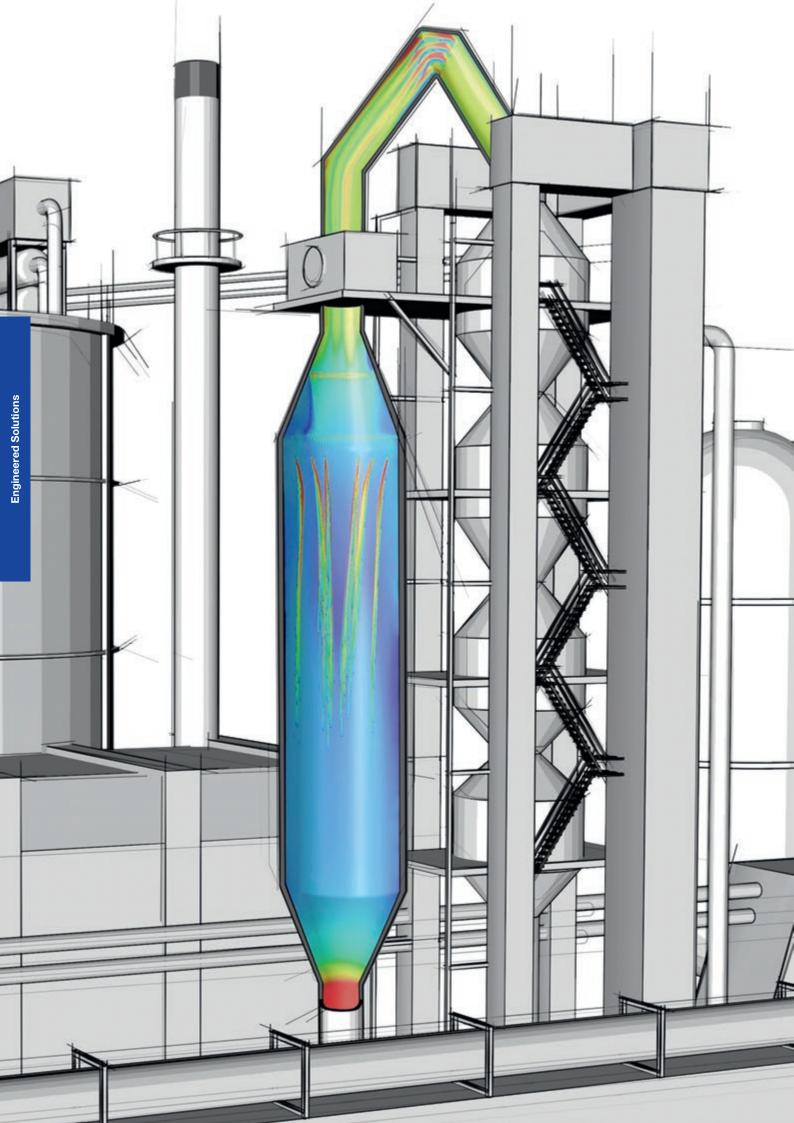


Profile geometry LTH 100

Profile geometry LTH 500


Profile geometry LTH 600

### **Extreme droplet separation**


### Finest droplets

In some applications, it is necessary to separate droplets that are significantly smaller than the limit droplet diameter of a vane-type droplet separator. In these cases, we use fiber packs as agglomerators in combination with vane-type separators.

Large liquid volumes
Optimum pre-separation is necessary if there are liquid surges in the inlet. The Lechler Inlet Device (LID) separates large liquid quantities with maximum efficiency and thus optimizes the flow of the rising gas.







## CFD ANALYSIS

#### Fluid Dynamics simulation as a process optimization tool

For us, perfection is not just a promise, but is based on calculation of computational Fluid Dynamics (CFD).

No matter what the spray application may be, the goal is always to achieve the maximum effect with the minimum possible use of material, spray media and energy. It is therefore essential to have

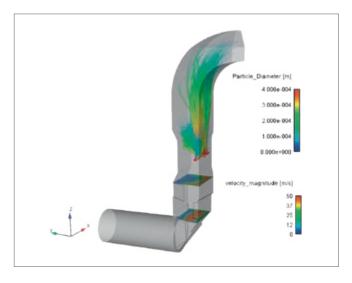
a detailed understanding of how spray mist is formed and propagated.

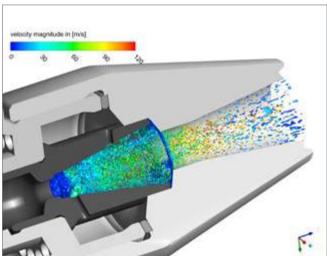
This is made possible by computer-assisted simulation of the flow processes of one or more media in static and dynamic environments, taking into account heat and mass transfer and almost every physical effect. These simula-

tions incorporate our knowhow from many decades of nozzle development.

Formerly mainly used as an internal R&D tool, we are now able to offer this know-how - paired with our highperformance computer - as an integrated service.

We can simulate nozzle applications and processes individually for your environment and requirements. The aim is to make your spray processes working exactly how you want them to.


## **Our services:**


- Simple flow field and pressure loss simulations with one or more gas/liquid in containers, pipes and fittings
- Full spray propagation in almost every environment including heat and mass transfer with the surrounding gases
- Calculation of the internal flow field in nozzles water distribution and spray characteristic close to the nozzle

## Your advantages:

- Maximum efficiency in
  - media consumption for nozzles and applications
- Through optimized
  - nozzl<u>e selection</u>
  - nozzle operation (for efficient use of pumps,

  - spray distribution droplet sizes optimized fluid flow upstream and downstream







## MEASURING TECHNOLOGY HOW OUR RESOURCES HELP US ACHIEVE PRECISION

### The basis for precision nozzle development

At Lechler, exact measurements have long been the basis for clearly defined spray characteristics. The data obtained in our laboratories form the foundation for any development and make it easier for our customers to choose nozzles for specific applications. This saves time, lowers costs and provides planning security.

#### **Advanced technology**

We have further expanded our research capacities by opening our own Development and Technology Center.


A highlight here is a laser-assisted phase doppler ane-mometer. As one of the most modern optical measuring procedures, it measures the velocity and the diameter of spherical droplets simultaneously and without contact. Using the data obtained, spectra can be reliably derived for particle size distributions and velocities.

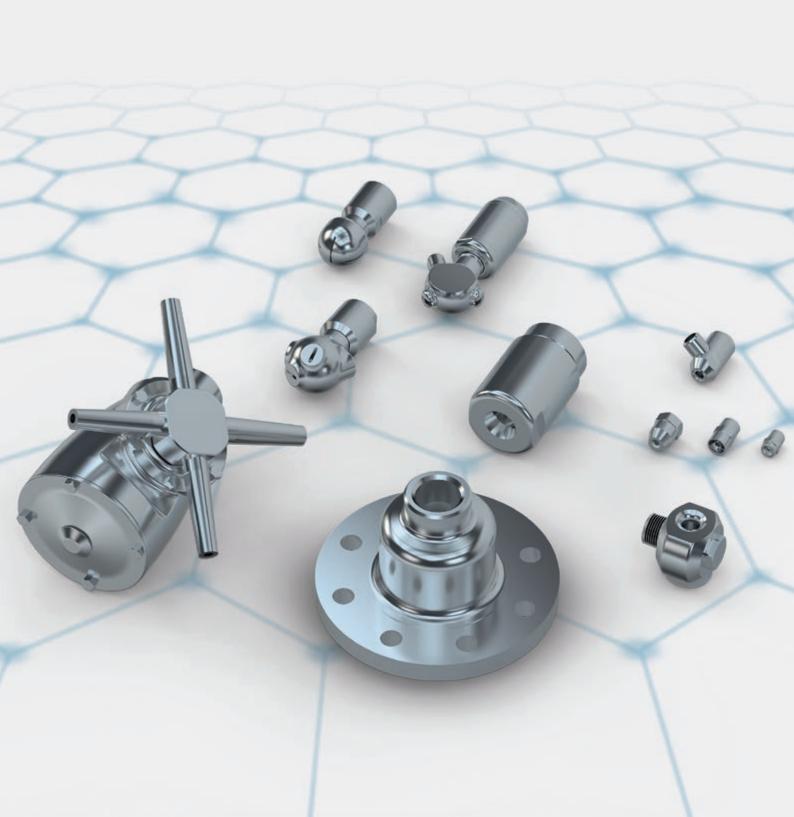
Measurements range from tiny water droplets in the micrometer region to very large droplets of around 8 millimeters. These are performed with a high temporal and spatial resolution.

Individual positions in the spray can be automatically approached and measured with extremely high accuracy – in x, y and z directions.

#### International cooperation

We at Lechler value the importance of international cooperation. For this is often what opens up new perspectives on a problem. In addition, cooperation offers us the possibility of testing nozzles in very special test environments and of discovering new use scenarios in this way.






### Our unique selling point: Practice-based knowledge

Since it was founded, Lechler has stood out for its development of new technologies. In more than a century we have successfully filed a large number of patents. Starting with the "Centrifugal Sprayer" from 1893 and going up to state-of-the-art technologies of the 21st Century. We will continue this proud tradition into the future, and our new technical center will be key to doing so. After seven years of construction, the Lechler Development and Technology Center was opened in the summer of 2016. Since then it has offered everything nozzle developers dream of on a surface of over 600 m². In addition to extensive measuring facilities, state-of-the-art test benches with a wide range of pump performances are available to measure and investigate sprays, from microfine mist to fuller sprays with varying jetting characteristics.

## PRECISION NOZZLES: UTMOST ACCURACY AND WIDE PRODUCT RANGE

In the chemical industry there are innumerable applications that require the atomization of liquids of all kinds in different ways. The combination of all these parameters leads to thousands of different nozzles. At Lechler, we have them all. In this brochure, we present you with a selection of our most common nozzles used in chemical applications. If for some reason, you cannot find what you are looking for, please contact our experts to help you with finding the right nozzle for your application.

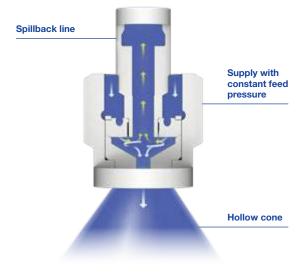


### Spillback nozzles

### Atomization without compressed air

## **Lechler spillback nozzles** atomize liquids as a fine hollow cone.

This single-fluid nozzle works according to the pressure atomization principle. The water is sent to the nozzle with an almost constant feed pressure, irrespectively of the atomized flow rate.


The amount injected is steplessly controlled via a valve in the spillback line, whereby part of the flow is taken from the inlet flow rate and carried back to the tank. The maximum atomized flow rate is achieved with the control valve closed.

Uniform and fine liquid atomization is achieved across the entire control range.

If the volume to be atomized is distributed over cluster heads with up to six small spillback nozzles, this leads to an improvement in the droplet quality compared to a single nozzle.

Thanks to the cluster heads' total spray angle of about 120°, the distribution of the water volume over the entire channel cross-section improves. The number of lances can be reduced in this way. We also recommend this option when upgrading existing gas cooling towers in particular.





medium-sized and large gas cooling towers

■ Gas cooling in

Use:

Scheme of the spillback nozzle

#### **Properties**



Spray angle of the individual nozzles 90° or 60° as hollow cone



High turn-down ratio of up to 12:1



Low operating costs

as no atomizing air required



Even and fine liquid atomization over the entire control range



Execution

as single or cluster nozzle lances possible

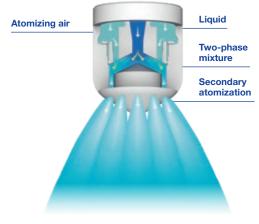


**Typical pressure range** of 35 bar, g in the supply line at the nozzle

### VarioJet® nozzles

# Twin-fluid nozzles with low air consumption despite large outlet angle

# Lechler VarioJet® nozzles atomize according to the principle of internal mixing. With this twin-fluid nozzle, the water is fed in axially via a bore hole.


After arriving at the cone tip, the liquid is split up into a thin liquid film. This thin liquid film is split into finest droplets by the atomizing air in the mixing chamber. The resulting two-phase mixture is then atomized a second time when exiting via several bore holes arranged in a circular pattern.

Thanks to the innovative design of the nozzle, a spray with a large outlet angle is achieved. This is characterized by an even liquid distribution as well as a fine droplet spectrum with a low specific air consumption.

The fineness of the droplet spectrum is decisively influenced by the air/liquid ratio and by the pressure level of the two fluids. As a general rule: the higher the air/liquid ratio and the higher the pressure level of atomizing air and liquid is, the finer the droplet spectrum.

The large free cross-sections in the nozzle keep the risk of clogging and the maintenance effort to a minimum.





Scheme of the VarioJet® nozzle

#### Use:

■ Gas cooling in gas cooling towers as well as gas-bearing pipes (ducts)

#### **Properties**



**Large spray angle** 60°, 90° for good coverage of the cross-section of the duct



Adjustment of the droplet spectrum by changing the air/fluid ratio



Clog-resistant thanks to large free cross-sections without internal fittings



**High turn-down ratio** up to 20:1



Low air consumption

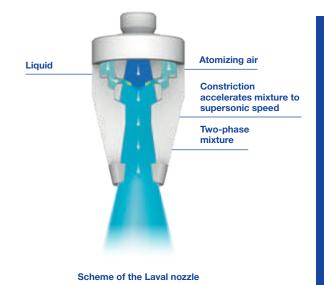


**Typical pressure range**Liquid 1-9 bar, g
Atomizing air 1-6 bar, g

### Laval nozzles

### Twin-fluid nozzles for a wide droplet spectrum in special applications

#### **Lechler Laval nozzles**


atomize liquids as a fine full cone. These twin-fluid nozzles work according to the supersonic principle.

A dual-phase mixture is created from atomizing air and liquid in the mixing chamber inside the nozzle. The shape of the nozzle causes this mixture to be accelerated to supersonic speed, resulting in an extremely fine atomization of the droplets.

By changing the air/liquid ratio, the droplet size and the droplet spectrum can be adapted within a wide range. The large free cross sections of the nozzle also allow atomization of viscous or solids-laden liquids.

Choosing the right material prevents wear even where abrasive media are present, and enables use at high temperatures.





- Gas cooling in gasbearing pipes (ducts) and medium-sized and small gas cooling towers
- Injection of solidsladen water
- Introduction of lime water in the desulfurisation process
- Injection of aqueous ammonia or urea solution for the DeNOx process (SNCR/SCR)
- Chemical process engineering (spray dryers etc.)

#### **Properties**



Small spray angle 15°, suitable for small cross-sections and horizontal ducts



Very large turn down ratio of 20:1 (in some cases up to 40:1)



Adjustment of the droplet spectrum by changing the air/fluid ratio



Very fine droplet spectrum



Clog-resistant thanks to large free

cross-sections without internal fittings



**Typical** pressure range Liquid 1-6 bar, g Atomizing air 1-6 bar, g



## Twin-fluid nozzles with internal mixing **Series 170/180**



## Efficient atomization by mixing liquid and gas.

- Internal mixing principle
- Mixing chamber inside the nozzle combines a gas and a liquid to form an intensive dual-phase mixture
- Extremely fine atomization with good regulating performance
- Large free cross sections
- Lower air consumption than with nozzles that mix externally
- Maintenance-free operation

#### **Applications:**

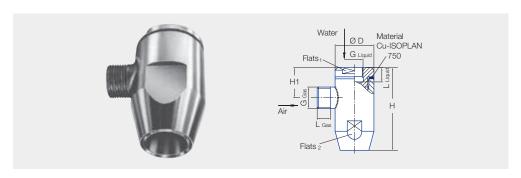
Gas cooling, air humidification, flue gas desulphurisation, spray drying, absorption

#### Liquid pressure:

1.0-5.0 bar

#### Air pressure:

1.0-5.0 bar


## Regulating range up to max.:

1:30

#### Spray angle:

approx. 20°

The nozzle's large free cross sections allow maintenancefree operation even when atomizing viscous and abrasive media with a high solid content.



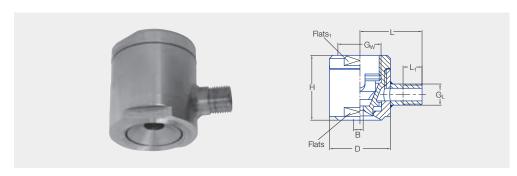
| T. #2.0 |       |                |      |                    | Dimension          | ns [mm]                  |                       |                     |                  | Weight  |
|---------|-------|----------------|------|--------------------|--------------------|--------------------------|-----------------------|---------------------|------------------|---------|
| Type    | Н     | H <sub>1</sub> | D    | Flats <sub>1</sub> | Flats <sub>2</sub> | G <sub>Liquid BSPP</sub> | G <sub>Gas BSPP</sub> | L <sub>Liquid</sub> | L <sub>Gas</sub> | 316L SS |
| 180.641 | 48.0  | 28.0           | 25.0 | 22.0               | 22.0               | G 1/8                    | G 3/8                 | 7.5                 | 10.0             | 140 g   |
| 170.801 | 81.0  | 29.5           | 38.0 | 32.0               | 32.0               | G 3/8                    | G 1/2                 | 14.0                | 13.0             | 540 g   |
| 170.881 | 81.0  | 29.5           | 38.0 | 32.0               | 32.0               | G 3/8                    | G 1/2                 | 14.0                | 13.0             | 540 g   |
| 170.961 | 112.0 | 42.0           | 52.0 | 46.0               | 46.0               | G 1/2                    | G 3/4                 | 18.0                | 15.0             | 1,275 g |

| Ordering | mo.<br>Mat.<br>no. | E<br>Ø<br>[mm] | E<br>Ø<br>[mm] |                      |                    |                       |                   | А                   | ir pressu               | ure <b>p</b> [ba  | ar]                 |                                  |                      |                     |                         |
|----------|--------------------|----------------|----------------|----------------------|--------------------|-----------------------|-------------------|---------------------|-------------------------|-------------------|---------------------|----------------------------------|----------------------|---------------------|-------------------------|
|          | 1Y                 |                |                |                      | 1.0                |                       |                   | 2.0                 |                         |                   | 3.0                 |                                  |                      | 4.0                 |                         |
| Туре     | 316L SS            | Air            | Water          | <b>p</b> Water [bar] | V Water [/min]     | <b>V</b> , Air [m³/h] | p Water [bar]     | V Water [//min]     | <b>V</b> , Air [m³/h]   | p Water [bar]     | V Water [//min]     | <b>V</b> <sub>n</sub> Air [m³/h] | <b>p</b> Water [bar] | V Water [//min]     | <b>V</b> , Air [m³/h]   |
| 180.641  | 0                  | 3.0            | 4.2            | 0.8<br>0.9<br>1.3    | 0.4<br>1.0<br>2.5  | 20.0<br>18.0<br>14.0  | 1.7<br>1.9<br>2.7 | 0.6<br>1.5<br>3.5   | 32.0<br>28.0<br>23.0    | 2.5<br>3.2<br>4.0 | 0.8<br>3.0<br>5.0   | 43.0<br>36.0<br>32.0             | 3.1<br>4.6<br>5.8    | 0.9<br>4.0<br>7.0   | 55.0<br>43.0<br>37.0    |
| 170.801  | 0                  | 2.0            | 5.5            | 0.7<br>0.9<br>1.0    | 1.0<br>3.0<br>5.0  | 40.0<br>35.0<br>32.0  | 1.5<br>1.8<br>2.0 | 1.0<br>5.0<br>10.0  | 58.0<br>52.0<br>48.0    | 2.2<br>2.6<br>3.0 | 1.2<br>7.0<br>14.0  | 80.0<br>72.0<br>63.0             | 3.2<br>3.6<br>4.0    | 1.2<br>10.0<br>20.0 | 105.0<br>91.0<br>83.0   |
| 170.881  | 0                  | 2.8            | 7.6            | 0.6<br>0.8<br>0.9    | 1.0<br>5.0<br>8.0  | 60.0<br>55.0<br>50.0  | 1.5<br>1.7<br>1.9 | 1.2<br>7.0<br>13.0  | 95,.0<br>90.0<br>80.0   | 2.2<br>2.5<br>3.0 | 1.5<br>10.0<br>19.0 | 130.0<br>118.0<br>105.0          | 3.1<br>3.5<br>4.1    | 1.8<br>15.0<br>28.0 | 171.0<br>154.0<br>143.0 |
| 170.961  | 0                  | 3.2            | 9.5            | 0.6<br>0.8<br>1.0    | 1.0<br>5.0<br>12.0 | 94.0<br>85.0<br>72.0  | 1.4<br>1.7<br>1.9 | 1.2<br>10.0<br>19.0 | 155.0<br>130.0<br>115.0 | 2.2<br>2.6<br>3.0 | 1.5<br>15.0<br>26.0 | 210.0<br>179.0<br>152.0          | 3.0<br>3.5<br>4.1    | 1.8<br>20.0<br>38.0 | 275.0<br>220.0<br>198.0 |

E = narrowest free cross section

| Example       | Туре    | + | Material no. | = | Ordering no. |
|---------------|---------|---|--------------|---|--------------|
| for ordering: | 180.641 | + | 1Y           | = | 180.641.1Y   |






## Fine liquid atomization by means of air or vapour.

- Liquid, air or vapour are supplied under pressure
- The air or vapour pressure must always be higher than liquid pressure
- A higher air-/water ratio leads to finer atomization

#### **Applications:**

Chemical process engineering, cooling processes, atomizing viscous liquids.



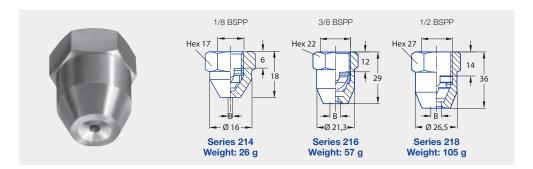
| Туре                    | G <sub>w</sub><br>BSPP | G <sub>L</sub><br>BSPP | H<br>[mm] | D<br>[mm] | L<br>[mm] | L <sub>1</sub><br>[mm] | Flats<br>[mm] | Flats <sub>1</sub> [mm] | Weight<br>316Ti SS |
|-------------------------|------------------------|------------------------|-----------|-----------|-----------|------------------------|---------------|-------------------------|--------------------|
| 150.005.17 - 150.013.17 | G 3/8                  | G 1/4 A                | 38.0      | 28.0      | 32.5      | 10.0                   | 24.0          | 24.0                    | 140 g              |
| 150.032.17              | G 1                    | G 3/8 A                | 52.0      | 48.0      | 49.0      | 15.0                   | 41.0          | 41.0                    | 500 g              |
| 150.050.17 - 150.063.17 | G 1 1/4                | G 1/2 A                | 75.0      | 65.0      | 58.0      | 15.0                   | 55.0          | 55.0                    | 1,350 g            |

| Spray angle | Ordering no. | Mat.                   | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |       |       | <b>V</b> [1/ | min]  |       |       |     | <b>V</b> <sub>n</sub> [r | ir  |     |
|-------------|--------------|------------------------|----------------|----------------|-------|-------|--------------|-------|-------|-------|-----|--------------------------|-----|-----|
|             | Туре         | <b>17</b> <sup>1</sup> |                |                |       | ı     | <b>p</b> [   | bar]  | ı     | ı     |     | Air pre                  |     | ı   |
|             |              | 316Ti                  |                |                | 0.3   | 0.5   | 0.7          | 1.0   | 1.5   | 2.0   | 1.0 | 2.0                      | 3.0 | 4.0 |
| 20-30°      | 150.005      | 0                      | 1.0            | 1.0            | 0.15  | 0.20  | 0.24         | 0.28  | 0.35  | 0.40  | 10  | 15                       | 20  | 25  |
|             | 150.007      | 0                      | 2.0            | 2.0            | 0.39  | 0.50  | 0.59         | 0.71  | 0.87  | 1.00  | 10  | 15                       | 20  | 25  |
|             | 150.009      | 0                      | 4.0            | 2.0            | 0.97  | 1.25  | 1.48         | 1.77  | 2.17  | 2.50  | 10  | 15                       | 20  | 25  |
|             | 150.010      | 0                      | 3.5            | 2.0            | 1.55  | 2.00  | 2.37         | 2.83  | 3.46  | 4.00  | 10  | 15                       | 20  | 25  |
|             | 150.013      | 0                      | 6.0            | 2.0            | 3.10  | 4.00  | 4.73         | 5.66  | 6.93  | 8.00  | 10  | 15                       | 20  | 25  |
|             | 150.032      | 0                      | 8.0            | 2.7            | 3.10  | 4.00  | 4.73         | 5.66  | 6.93  | 8.00  | 31  | 47                       | 63  | 80  |
|             | 150.050      | 0                      | 9.0            | 4.9            | 6.20  | 8.00  | 9.47         | 11.31 | 13.86 | 16.00 | 60  | 90                       | 120 | 150 |
|             | 150.052      | 0                      | 9.0            | 4.9            | 12.20 | 15.75 | 18.64        | 22.27 | 27.28 | 31.50 | 60  | 90                       | 120 | 150 |
|             | 150.063      | 0                      | 15.0           | 4.9            | 24.40 | 31.50 | 37.27        | 44.55 | 54.56 | 63.00 | 100 | 150                      | 200 | 250 |

 $<sup>^1</sup>$  We reserve the right to deliver 316Ti SS or 316L SS under the material no. 17. B = bore diameter  $\cdot$  E = narrowest free cross section

Example Type + Material no. = Ordering no. for ordering: 150.005 + 17 = 150.005.17

## Axial-flow hollow cone nozzles


### Series 214/216/218



## Fine, uniform hollow cone spray.

#### **Applications:**

Cooling and cleaning of air and gas, dust control, spraying onto filters, spray drying, desuperheating.



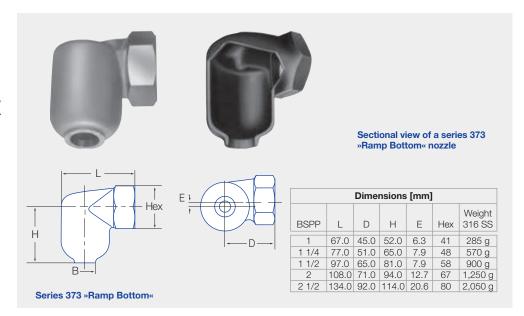
| Spray angle | Ordering no.                             | Mat.<br>no.<br><b>17</b> <sup>1</sup> | G                        | B<br>Ø<br>[mm]               | E<br>Ø<br>[mm]               |                              |                              |                              | <b>v</b> [l/min] <b>p</b> [bar] |                               |                                 |                                  | Spray diameter D at p = 3 bar |
|-------------|------------------------------------------|---------------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------------|-------------------------------|
|             |                                          | 316Ti                                 | BSPP                     |                              |                              | 0.5                          | 1.0                          | 2.0                          | 3.0                             | 5.0                           | 10.0                            | 20.0                             | H =<br>250 mm                 |
| 60°         | 214.184                                  | 0                                     | 1/8                      | 0.50                         | 0.50                         | -                            | -                            | 0.08                         | 0.10                            | 0.13                          | 0.18                            | 0.25                             | 200                           |
| 80°         | 214.245<br>214.305                       | 0                                     | 1/8<br>1/8               | 1.00<br>1.80                 | 0.50<br>0.50                 | -                            | - 0.23                       | 0.16<br>0.32                 | 0.20<br>0.39                    | 0.25<br>0.51                  | 0.36<br>0.72                    | 0.51<br>1.01                     | 450<br>450                    |
| 60°         | 216.324<br>216.364<br>216.404            | 0                                     | 3/8<br>3/8<br>3/8        | 1.00<br>1.40<br>2.00         | 1.00<br>1.40<br>2.00         | -<br>-<br>-                  | 0.28<br>0.45<br>0.71         | 0.40<br>0.63<br>1.00         | 0.49<br>0.77<br>1.22            | 0.63<br>1.00<br>1.58          | 0.89<br>1.41<br>2.24            | 1.26<br>1.99<br>3.16             | 200<br>200<br>200             |
| 90°         | 216.496<br>216.566<br>216.646            | 0 0                                   | 3/8<br>3/8<br>3/8        | 3.00<br>4.00<br>3.50         | 2.00<br>2.00<br>2.00         | -<br>-<br>2.00               | 1.20<br>1.77<br>2.83         | 1.70<br>2.50<br>4.00         | 2.08<br>3.06<br>4.90            | 2.69<br>3.95<br>6.32          | 3.80<br>5.59<br>8.94            | 5.38<br>7.91<br>12.65            | 500<br>500<br>500             |
|             | 216.686<br>216.726<br>216.776<br>218.646 | 0 0 0                                 | 3/8<br>3/8<br>3/8<br>1/2 | 4.00<br>5.00<br>6.00<br>5.00 | 2.00<br>2.00<br>2.00<br>2.00 | 2.50<br>3.15<br>4.30<br>2.00 | 3.54<br>4.45<br>6.00<br>2.83 | 5.00<br>6.30<br>8.50<br>4.00 | 6.12<br>7.72<br>10.40<br>4.90   | 7.91<br>9.96<br>13.40<br>6.32 | 11.18<br>14.09<br>19.00<br>8.94 | 15.81<br>19.92<br>26.90<br>12.65 | 500<br>500<br>500<br>500      |
|             | 218.706<br>218.766<br>218.826            | 0 0 0                                 | 1/2<br>1/2<br>1/2        | 6.50<br>5.00<br>6.50         | 2.00<br>2.00<br>2.00         | 2.80<br>4.00<br>5.60         | 3.96<br>5.66<br>7.92         | 5.60<br>8.00<br>11.20        | 6.86<br>9.80<br>13.72           | 8.85<br>12.65<br>17.71        | 12.52<br>17.89<br>25.04         | 17.71<br>25.30<br>35.42          | 500<br>500<br>500             |
|             | 218.846<br>218.886                       | 0                                     | 1/2<br>1/2               | 7.50<br>9.00                 | 2.00<br>2.40                 | 6.25<br>8.00                 | 8.84<br>11.31                | 12.50<br>16.00               | 15.31<br>19.60                  | 19.76<br>25.30                | 27.95<br>35.78                  | 39.53<br>50.60                   | 500<br>500                    |

 $<sup>^1</sup>$  We reserve the right to deliver 316Ti SS or 316L SS under the material no. 17. B = bore diameter  $\cdot$  E = narrowest free cross section

| Example      | Type    | + | Material no. | = | Ordering no. |
|--------------|---------|---|--------------|---|--------------|
| for ordering | 214.184 | + | 17           | = | 214.184.17   |








Fine, uniform hollow cone spray, also at low pressures.

#### **Applications:**

cooling and cleaning of gas, water re-cooling, dust control, chemical process engineering.

»Ramp Bottom« design offering a longer service life, due to the patented sloping shape of the swirl chamber.



| Spray |         | Orde        | ering n | 0.      |         |        |         | В         |        |        |              |        |          |          | Spray di      | ameter D       |
|-------|---------|-------------|---------|---------|---------|--------|---------|-----------|--------|--------|--------------|--------|----------|----------|---------------|----------------|
| angle |         | Mat.<br>no. |         |         | Code    |        |         | Ø<br>[mm] |        |        | <b>V</b> [l/ | min]   |          |          | at p=         | 2 bar          |
| A     | Туре    | 17          | Д.      | BSPP    | BSPP    | Д      | BSPP    | . ,       |        | l      | I            | K      |          |          |               |                |
|       |         | 316 SS      | 1 BSPP  | 1 1/4 E | 1 1/2 E | 2 BSPP | 2 1/2 E |           | 0.3    | 0.5    | 1.0          | 2.0    | 5.0      | 10.0     | H =<br>500 mm | H =<br>1000 mm |
| 70°   | 373.115 | 0           | AN      | -       | -       | -      | -       | 11.40     | 24.40  | 31.50  | 44.50        | 63.00  | 99.60    | 141.00   | 650           | 1,300          |
| 80°   | 373.175 | 0           | AN      | -       | -       | -      | -       | 12.90     | 31.00  | 40.00  | 56.60        | 80.00  | 126.00   | 179.00   | 800           | 1,550          |
|       | 373.235 | 0           | -       | AQ      | -       | -      | -       | 16.20     | 45.70  | 59.00  | 83.40        | 118.00 | 187.00   | 264.00   | 700           | 1,350          |
|       | 373.285 | 0           | -       | AQ      | -       | -      | -       | 20.50     | 62.00  | 80.00  | 113.00       | 160.00 | 253.00   | 358.00   | 800           | 1,550          |
|       | 373.325 | 0           | -       | -       | AS      | -      | -       | 22.20     | 77.50  | 100.00 | 141.00       | 200.00 | 316.00   | 447.00   | 800           | 1,550          |
|       | 373.365 | 0           | -       | -       | AS      | -      | -       | 23.60     | 67.90  | 114.00 | 161.00       | 227.00 | 359.00   | 508.00   | 700           | 1,400          |
|       | 373.415 | 0           | -       | -       | -       | AW     | -       | 25.60     | 131.00 | 169.00 | 238.00       | 337.00 | 533.00   | 754.00   | 700           | 1,400          |
|       | 373.465 | 0           | -       | -       | -       | AW     | -       | 30.70     | 182.00 | 235.00 | 332.00       | 469.00 | 742.00   | 1,049.00 | 965           | 1,800          |
|       | 373.505 | 0           | -       | -       | -       | -      | AZ      | 32.50     | 209.00 | 270.00 | 382.00       | 540.00 | 854.00   | 1,207.00 | 800           | 1,500          |
|       | 373.515 | 0           | -       | -       | -       | -      | AZ      | 34.80     | 233.00 | 301.00 | 425.00       | 601.00 | 950.00   | 1,344.00 | 900           | 1,700          |
|       | 373.555 | 0           | -       | -       | -       | -      | ΑZ      | 41.10     | 290.00 | 375.00 | 530.00       | 750.00 | 1,186.00 | 1,677.00 | 900           | 1,700          |

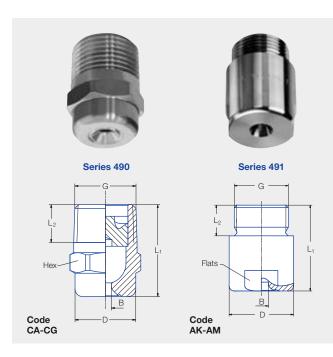
 $B = bore diameter \cdot E = narrowest free cross section$ 

| Example       | Туре    | + | Material no. | + | Code | = | Ordering no.  |
|---------------|---------|---|--------------|---|------|---|---------------|
| for ordering: | 373 115 | _ | 17           | _ | ΔNI  | _ | 373 115 17 AN |



### Axial-flow full cone nozzles

## **Series 490/491**






Non-clogging nozzle design with a very stable spray angle, particularly even liquid distribution and large free cross sections.

#### **Applications:**

Cleaning and washing processes, surface spraying, Container cleaning, foam precipitation, degassing of liquids.



Series 490/491 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD).

Nozzles of series 490/491 replace series 460/461 which are still available on request.

| Code |          | Dimen          | sions [mn      | n]   |           | Weight   |
|------|----------|----------------|----------------|------|-----------|----------|
| Code | G        | L <sub>1</sub> | L <sub>2</sub> | D    | Hex/Flats | vveigrit |
| CA   | 1/8 BSPT | 18.0           | 6.5            | 10.0 | 11        | 13 g     |
| CC   | 1/4 BSPT | 22.0           | 10.0           | 13.0 | 14        | 16 g     |
| CE   | 3/8 BSPT | 24.5           | 10.0           | 16.0 | 17        | 30 g     |
| CE   | 3/8 BSPT | 30.0           | 10.0           | 16.0 | 17        | 50 g     |
| CG   | 1/2 BSPT | 32.5           | 13.0           | 21.0 | 22        | 60 g     |
| CG   | 1/2 BSPT | 43.5           | 13.0           | 21.0 | 22        | 85 g     |
| AK   | 3/4 BSPP | 42.0           | 15.0           | 32.0 | 27        | 190 g    |
| AM   | 1 BSPP   | 56.0           | 17.0           | 40.0 | 36        | 350 g    |

Subject to technical modifications. Please enquire about the exact dimensions if the installation situation is critical.

| Spray |         |         | C     | Orderir  | ng no.   |          |          |          |        | В         | Е    |      |      |       | <b>∵</b> .⊓/ · 1 |       |       |       | Spray dia     | ameter D<br>2 bar |
|-------|---------|---------|-------|----------|----------|----------|----------|----------|--------|-----------|------|------|------|-------|------------------|-------|-------|-------|---------------|-------------------|
| angle |         | Mat     | . no. |          |          | Co       | de       |          |        | Ø<br>[mm] | [mm] |      |      |       | <b>V</b> [l/min] |       |       |       | at p=         | :2 bar            |
| A     | Type    | 1Y      | 30    | F        | F        | Ţ        | _        | <u>a</u> |        | [         | []   |      |      |       |                  |       |       |       |               |                   |
|       |         | 316L SS | Brass | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPP | 1 BSPP |           |      | 0.5  | 1.0  | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | H =<br>200 mm | H = 500 mm        |
| 45°   | 490.403 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.25      | 1.25 | 0.57 | 0.76 | 1.00  | 1.18             | 1.44  | 1.65  | 1.90  | 160           | 400               |
|       | 490.523 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.70      | 1.70 | 1.15 | 1.52 | 2.00  | 2.35             | 2.89  | 3.30  | 3.81  | 160           | 400               |
|       | 490.603 | 0       | 0     | -        | CC       | CE*      | -        | -        | -      | 2.00      | 2.00 | 1.81 | 2.39 | 3.15  | 3.70             | 4.54  | 5.20  | 6.00  | 160           | 400               |
|       | 490.643 | 0       | 0     | -        | CC       | CE*      | -        | -        | -      | 2.45      | 2.45 | 2.30 | 3.03 | 4.00  | 4.70             | 5.77  | 6.60  | 7.61  | 160           | 400               |
|       | 490.683 | -       | 0     | -        | -        | CE       | -        | -        | -      | 2.55      | 2.55 | 2.87 | 3.79 | 5.00  | 5.88             | 7.21  | 8.25  | 9.52  | 160           | 400               |
|       | 490.703 | -       | 0     | -        | -        | CE       | -        | -        | -      | 2.65      | 2.65 | 3.22 | 4.24 | 5.60  | 6.59             | 8.08  | 9.24  | 10.66 | 160           | 400               |
|       | 490.723 | 0       | 0     | -        | -        | CE       | -        | -        | -      | 2.85      | 2.85 | 3.62 | 4.77 | 6.30  | 7.41             | 9.09  | 10.40 | 11.99 | 160           | 400               |
|       | 490.783 | -       | 0     | -        | -        | -        | CG       | -        | -      | 3.45      | 3.45 | 5.17 | 6.82 | 9.00  | 10.58            | 12.98 | 14.85 | 17.12 | 160           | 400               |
|       | 490.843 | -       | 0     | -        | -        | -        | CG       | -        | -      | 3.80      | 3.80 | 7.18 | 9.47 | 12.50 | 14.70            | 18.03 | 20.63 | 23.80 | 160           | 400               |
| 60°   | 490.404 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.15      | 1.15 | 0.57 | 0.76 | 1.00  | 1.18             | 1.44  | 1.65  | 1.90  | 220           | 560               |
|       | 490.444 | 0       | -     | CA       | -        | -        | -        | -        | -      | 1.25      | 1.25 | 0.72 | 0.95 | 1.25  | 1.47             | 1.80  | 2.06  | 2.38  | 220           | 560               |
|       | 490.484 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.45      | 1.45 | 0.92 | 1.21 | 1.60  | 1.88             | 2.31  | 2.64  | 3.05  | 220           | 560               |
|       | 490.524 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.60      | 1.60 | 1.15 | 1.52 | 2.00  | 2.35             | 2.89  | 3.30  | 3.81  | 220           | 560               |
|       | 490.564 | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.80      | 1.80 | 1.44 | 1.89 | 2.50  | 2.94             | 3.61  | 4.13  | 4.76  | 220           | 560               |
|       | 490.604 | 0       | 0     | CA       | CC       | CE       | -        | -        | -      | 2.05      | 2.05 | 1.81 | 2.39 | 3.15  | 3.70             | 4.54  | 5.20  | 6.00  | 220           | 560               |

<sup>\*</sup>Only available in material 30  $\cdot$  B = bore diameter  $\cdot$  E = narrowest free cross section

Continued on next page.



# Axial-flow full cone nozzles **Series 490/491**





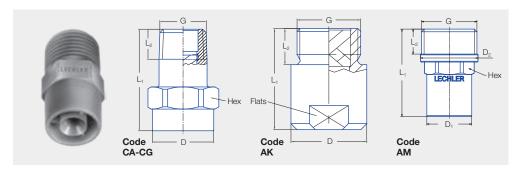
| Spray |                    |           | C     | Orderir  | ng no.   |          |          |          |        | В            | Е            |              |              |              |                  |        |        |                | Sprav dia     | ameter D       |
|-------|--------------------|-----------|-------|----------|----------|----------|----------|----------|--------|--------------|--------------|--------------|--------------|--------------|------------------|--------|--------|----------------|---------------|----------------|
| angle |                    | Mat.      | no.   |          |          | Co       | de       |          |        | Ø<br>[mm]    | Ø<br>[mm]    |              |              |              | <b>V</b> [l/min] |        |        |                | at p=         | 2 bar          |
| A     | Type               | <b>1Υ</b> | 30    | Ъ        | ٦-       | эŢ       | ъ        | Ь        |        | []           | []           |              |              |              | <b>p</b> [bar]   |        |        |                |               | $\geq$         |
|       |                    | 316L SS   | Brass | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPP | 1 BSPP |              |              | 0.5          | 1.0          | 2.0          | 3.0              | 5.0    | 7.0    | 10.0           | H =<br>200 mm | H =<br>500 mm  |
| 60°   | 490.644            | 0         | 0     | -        | СС       | CE       | -        | -        | -      | 2.30         | 2.30         | 2.30         | 3.03         | 4.00         | 4.70             | 5.77   | 6.60   | 7.61           | 220           | 560            |
|       | 490.684            | 0         | 0     | -        | CC       | CE       | -        | -        | -      | 2.60         | 2.60         | 2.87         | 3.79         | 5.00         | 5.88             | 7.21   | 8.25   | 9.52           | 220           | 560            |
|       | 490.724<br>490.764 | 0         | 0     | -        | CC       | CE       | -        | -        | -      | 2.95<br>3.25 | 2.80<br>3.25 | 3.62<br>4.59 | 4.77<br>6.06 | 6.30<br>8.00 | 7.41<br>9.41     | 9.09   | 10.40  | 11.99<br>15.22 | 220<br>220    | 560<br>560     |
|       | 490.804            | 0         | 0     | _        |          | CE       | _        | _        | _      | 3.70         | 3.70         | 5.74         | 7.58         | 10.00        | 11.76            | 14.43  | 16.51  | 19.04          | 220           | 560            |
|       | 490.844            | 0         | 0     | -        | -        | -        | CG       | -        | -      | 4.05         | 4.05         | 7.18         | 9.47         | 12.50        | 14.70            | 18.03  | 20.63  | 23.80          | 220           | 560            |
|       | 490.884            | 0         | 0     | -        | -        | -        | CG       | -        | -      | 4.65         | 4.65         | 9.19         | 12.13        | 16.00        | 18.82            | 23.08  | 26.41  | 30.46          | 220           | 560            |
|       | 490.924            | 0         | 0     | -        | -        | -        | -        | AK       | -      | 5.20         | 5.20         | 11.49        | 15.16        | 20.00        | 23.52            | 28.85  | 33.01  | 38.07          | 220           | 560            |
|       | 490.964            | 0         | 0     | -        | -        | -        | -        | AK       | -      | 5.80         | 5.80         | 14.36        | 18.95        | 25.00        | 29.40            | 36.07  | 41.26  | 47.59          | 220           | 560            |
|       | 491.044            | 0         | 0     | -        | -        | -        | -        | -        | AM     | 7.25         | 7.25         | 22.97        | 30.31        | 40.00        | 47.04            | 57.71  | 66.02  | 76.15          | 220           | 560            |
|       | 491.084            | 0         | 0     | -        | -        | -        | -        | -        | AM     | 8.15         | 8.15         | 28.72        | 37.89        | 50.00        | 58.80            | 72.14  | 82.53  | 95.18          | 220           | 560            |
| 90°   | 490.406            | 0         | 0     | CA       | -        | -        | -        | -        | -      | 1.20         | 1.20         | 0.57         | 0.76         | 1.00         | 1.18             | 1.44   | 1.65   | 1.90           | 380           | 860            |
|       | 490.446            | -         | 0     | CA       | -        | -        | -        | -        | -      | 1.30         | 1.30         | 0.72         | 0.95         | 1.25         | 1.47             | 1.80   | 2.06   | 2.38           | 380           | 860            |
|       | 490.486<br>490.526 | 0         | 0     | CA       | -        | -        | -        | -        | -      | 1.45<br>1.70 | 1.45         | 0.92         | 1.21         | 1.60         | 1.88             | 2.31   | 2.64   | 3.05           | 380           | 860<br>860     |
|       | 490.566            | 0         | 0     | CA       | _        | _        | _        | _        | _      | 1.90         | 1.90         | 1.44         | 1.89         | 2.50         | 2.94             | 3.61   | 4.13   | 4.76           | 380           | 860            |
|       | 490.606            | 0         | 0     | CA       | -        | CE       | -        | -        | -      | 2.10         | 2.05         | 1.81         | 2.39         | 3.15         | 3.70             | 4.54   | 5.20   | 6.00           | 380           | 860            |
|       | 490.646            | O         | O     | -        | СС       | CE       | -        | -        | -      | 2.40         | 2.40         | 2.30         | 3.03         | 4.00         | 4.70             | 5.77   | 6.60   | 7.61           | 390           | 960            |
|       | 490.686            | 0         | 0     | -        | СС       | CE       | -        | -        | -      | 2.70         | 2.70         | 2.87         | 3.79         | 5.00         | 5.88             | 7.21   | 8.25   | 9.52           | 390           | 960            |
|       | 490.726            | 0         | 0     | -        | CC       | CE       | -        | -        | -      | 3.20         | 2.80         | 3.62         | 4.77         | 6.30         | 7.41             | 9.09   | 10.40  | 11.99          | 390           | 960            |
|       | 490.746            | 0         | 0     | -        | -        | CE       | -        | -        | -      | 3.15         | 3.15         | 4.08         | 5.38         | 7.10         | 8.35             | 10.24  | 11.72  | 13.52          | 390           | 960            |
|       | 490.766            | 0         | 0     | -        | -        | CE       | -        | -        | -      | 3.40         | 3.40         | 4.59         | 6.06         | 8.00         | 9.41             | 11.54  | 13.20  | 15.22          | 390           | 960            |
|       | 490.806            | 0         | 0     | -        | -        | CE       | -        | -        | -      | 3.90         | 3.90         | 5.74         | 7.58         | 10.00        | 11.76            | 14.43  | 16.51  | 19.04          | 390           | 960            |
|       | 490.846<br>490.886 | 0         | 0     | -        | -        | CE<br>-  | -<br>CG  | -        | -      | 4.65<br>5.45 | 4.00         | 7.18<br>9.19 | 9.47         | 12.50        | 14.70            | 18.03  | 20.63  | 23.80          | 390<br>390    | 960<br>960     |
|       | 490.886            | 0         | 0     | -        | _        | -        | CG       | -        | -      | 5.45         | 4.50         | 11.49        | 15.16        | 20.00        | 23.52            | 28.85  | 33.01  | 38.07          | 390           | 960            |
|       | 490.966            | 0         | 0     | _        | -        | -        | CG       | AK       | _      | 6.55         | 4.85         | 14.36        | 18.95        | 25.00        | 29.40            | 36.07  | 41.26  | 47.59          | 390           | 960            |
|       | 491.006            | O         | O     | _        | -        | -        | -        | AK       | _      | 7.55         | 5.50         | 18.09        | 23.87        | 31.50        | 37.05            | 45.45  | 51.99  | 59.97          | 390           | 960            |
|       | 491.046            | 0         | 0     | -        | -        | -        | -        | AK       | -      | 8.60         | 6.60         | 22.97        | 30.31        | 40.00        | 47.04            | 57.71  | 66.02  | 76.15          | 390           | 960            |
|       | 491.086            | 0         | 0     | -        | -        | -        | -        | -        | AM     | 9.45         | 7.25         | 28.72        | 37.89        | 50.00        | 58.80            | 72.14  | 82.53  | 95.18          | 390           | 960            |
|       | 491.126            | 0         | 0     | -        | -        | -        | -        | -        | AM     | 10.40        | 8.00         | 36.18        | 47.75        | 63.00        | 74.09            | 90.89  | 103.98 | 119.93         | 390           | 960            |
|       | 491.146            | 0         | -     | -        | -        | -        | -        | -        | AM     | 11.00        | 7.50         | 40.78        | 53.81        | 71.00        | 83.50            | 102.43 | 117.19 | 135.16         | 390           | 960            |
| 120°  | 490.368            | 0         | 0     | CA       | -        | -        | -        | -        | -      | 0.85         | 0.65         | 0.36         | 0.48         | 0.63         | 0.74             | 0.91   | 1.04   | 1.20           | 680           | 1,220          |
|       | 490.408            | 0         | 0     | CA       | -        | -        | -        | -        | -      | 1.20         | 1.20         | 0.57         | 0.76         | 1.00         | 1.18             | 1.44   | 1.65   | 1.90           | 680           | 1,220          |
|       | 490.448<br>490.488 | 0         | 0     | CA       | -        | -        | -        | -        | -      | 1.30         | 1.30         | 0.72         | 0.95         | 1.25         | 1.47             | 1.80   | 2.06   | 2.38           | 680           | 1,220          |
|       | 490.488            | 0         | 0     | CA       | -        | -        |          | -        | -      | 1.45<br>1.70 | 1.45         | 0.92         | 1.21         | 1.60         | 1.88             | 2.31   | 2.64   | 3.05           | 680<br>680    | 1,220<br>1,220 |
|       | 490.568            | 0         | 0     | CA       | -        | -        | _        | _        | _      | 1.90         | 1.90         | 1.44         | 1.89         | 2.50         | 2.94             | 3.61   | 4.13   | 4.76           | 680           | 1,220          |
|       | 490.608            | 0         | 0     | CA       | -        | -        | -        | _        | -      | 2.10         | 2.05         | 1.81         | 2.39         | 3.15         | 3.70             | 4.54   | 5.20   | 6.00           | 680           | 1,220          |
|       | 490.648            | 0         | 0     | -        | СС       | CE       | -        | -        | -      | 2.40         | 2.40         | 2.30         | 3.03         | 4.00         | 4.70             | 5.77   | 6.60   | 7.61           | 680           | 1,330          |
|       | 490.688            | 0         | 0     | -        | CC       | CE       | -        | -        | -      | 2.75         | 2.75         | 2.87         | 3.79         | 5.00         | 5.88             | 7.21   | 8.25   | 9.52           | 680           | 1,330          |
|       | 490.728            | 0         | 0     | -        | CC       | CE       | -        | -        | -      | 3.20         | 2.80         | 3.62         | 4.77         | 6.30         | 7.41             | 9.09   | 10.40  | 11.99          | 680           | 1,330          |
|       | 490.748            | 0         | 0     | -        | -        | CE       | -        | -        | -      | 3.20         | 3.20         | 4.08         | 5.38         | 7.10         | 8.35             | 10.24  | 11.72  | 13.52          | 680           | 1,330          |
|       | 490.768            | 0         | 0     | -        | -        | CE       | -        | -        | -      | 3.45         | 3.45         | 4.59         | 6.44         | 8.00         | 9.41             | 11.54  | 13.20  | 15.22          | 680           | 1,330          |
|       | 490.808<br>490.848 | 0         | 0     | -        |          | CE<br>CE | -        | -        | -      | 3.90<br>4.70 | 3.90<br>4.00 | 5.74<br>7.18 | 7.58<br>9.47 | 10.00        | 11.76            | 14.43  | 16.51  | 19.04<br>23.80 | 680<br>680    | 1,330<br>1,330 |
|       | 490.888            | 0         | 0     | _        | _        | -        | CG       | -        | _      | 5.10         | 4.50         | 9.19         | 12.13        | 16.00        | 18.82            | 23.08  | 26.41  | 30.46          | 680           | 1,330          |
|       | 490.928            | 0         | 0     | _        | -        | -        | CG       | _        | _      | 5.80         | 4.75         | 11.49        | 15.16        | 20.00        | 23.52            | 28.85  | 33.01  | 38.07          | 680           | 1,330          |
|       | 490.968            | 0         | 0     | -        | -        | -        | CG       | AK       | -      | 6.65         | 4.85         | 14.36        | 18.95        | 25.00        | 29.40            | 36.07  | 41.26  | 47.59          | 680           | 1,330          |
|       | 491.048            | Ö         | 0     | -        | -        | - 1      | -        | AK       | -      | 9.20         | 5.85         | 22.97        | 30.31        | 40.00        | 47.04            | 57.71  | 66.02  | 76.15          | 680           | 1,330          |
|       | 491.128            | 0         | 0     | -        | -        | -        | -        | -        | AM     | 10.80        | 7.75         | 36.18        | 47.75        | 63.00        | 74.09            | 90.89  | 103.98 | 119.93         | 680           | 1,330          |
|       | 491.148            | 0         | -     | -        | -        | -        | -        | -        | AM     | 11.40        | 7.65         | 40.78        | 53.81        | 71.00        | 83.50            | 102.43 | 117.19 | 135.16         | 680           | 1,330          |
|       |                    |           |       |          |          |          |          |          |        |              |              |              |              |              |                  |        |        |                |               |                |

 $B = bore diameter \cdot E = narrowest free cross section$ 

Other nozzle materials (special alloys, plastics) are available on request.

Example Type + Material no. + Code = Ordering no. for ordering: 490.644 + 1Y + CC = 490.644.1Y.CC








#### Very uniform spray pattern.

#### **Applications:**

Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving of chemical reactions.



| Code |          |                | imension       | s [mm]         |       |           |
|------|----------|----------------|----------------|----------------|-------|-----------|
| Code | G        | L <sub>1</sub> | L <sub>2</sub> | D <sub>1</sub> | $D_2$ | Hex/Flats |
| CA   | 1/8 BSPT | 22.0           | 6.5            | 13.0           | -     | 14        |
| CC   | 1/4 BSPT | 22.0           | 9.7            | 13.0           | -     | 14        |
| CE   | 3/8 BSPT | 30.0           | 10.0           | 17.0           | -     | 17        |
| CG   | 1/2 BSPT | 43.5           | 13.2           | 22.0           | -     | 22        |
| AK   | 3/4 BSPP | 42.0           | 15.0           | 31.5           | -     | 27        |
| AM   | 1 BSPP   | 52.5           | 15.0           | 27.0           | 34.5  | 27        |

Subject to technical modifications. Please enquire about the exact dimensions if the installation situation is critical!

| Spray |                    |      | Or      | rdering | no.    |        |        |        | B<br>Ø | E<br>Ø |              |       |       | ¥ fi/:-1         |       |       |        | Spray dia     | ameter D<br>:2 bar |
|-------|--------------------|------|---------|---------|--------|--------|--------|--------|--------|--------|--------------|-------|-------|------------------|-------|-------|--------|---------------|--------------------|
| angle |                    | Mat. |         |         | Co     | ode    |        |        | [mm]   | [mm]   |              |       |       | <b>V</b> [l/min] |       |       |        | at p=         | - Z Dai            |
| A     | Туре               | 5E   | ř       | BSPT    | BSPT   | BSPT   | BSPP   | Д.     |        |        |              |       |       | <b>p</b> [bar]   |       |       |        |               | 3                  |
|       |                    | PVDF | 1/8 BSI | 1/4 BS  | 3/8 BS | 1/2 BS | 3/4 BS | 1 BSPP |        |        | 0.5          | 1.0   | 2.0   | 3.0              | 5.0   | 7.0   | 10.0   | H =<br>200 mm | H = 500 mm         |
| 60°   | 460.524            | 0    | CA      | -       | -      | -      | -      | -      | 1.60   | 1.60   | 1.00         | 1.41  | 2.00  | 2.45             | 2.83  | 3.16  | 4.47   | 220           | 560                |
|       | 460.644            | 0    | -       | CC      | -      | -      | -      | -      | 2.40   | 1.90   | 2.30         | 3.03  | 4.00  | 4.70             | 5.77  | 6.60  | 7.61   | 220           | 560                |
|       | 460.724            | 0    | -       | CC      | -      | -      | -      | -      | 2.80   | 2.10   | 3.15         | 4.45  | 6.30  | 7.72             | 8.91  | 9.96  | 14.09  | 220           | 560                |
|       | 460.964            | 0    | -       | -       | -      | -      | AK     | -      | 5.80   | 4.90   | 14.36        | 18.95 | 25.00 | 29.40            | 36.07 | 41.26 | 47.59  | 220           | 560                |
| 90°   | 460.326            | 0    | CA      | -       | -      | -      | -      | -      | 0.80   | 0.55   | 0.23         | 0.30  | 0.40  | 0.47             | 0.58  | 0.66  | 0.76   | 380           | 860                |
|       | 460.406            | 0    | CA      | -       | -      | -      | -      | -      | 1.20   | 0.85   | 0.57         | 0.76  | 1.00  | 1.18             | 1.44  | 1.65  | 1.90   | 380           | 860                |
|       | 460.486            | 0    | CA      | -       | -      | -      | -      | -      | 1.45   | 1.20   | 0.92         | 1.21  | 1.60  | 1.88             | 2.31  | 2.64  | 3.05   | 380           | 860                |
|       | 460.526            | 0    | CA      | -       | -      | -      | -      | -      | 1.65   | 1.30   | 1.15         | 1.52  | 2.00  | 2.35             | 2.89  | 3.30  | 3.81   | 380           | 860                |
|       | 460.606            | 0    | CA      |         | CE     | -      | -      | -      | 2.05   | 1.45   | 1.81         | 2.39  | 3.15  | 3.70             | 4.54  | 5.20  | 6.00   | 380           | 860                |
|       | 460.646            | 0    | -       | CC      | -      | -      | -      | -      | 2.30   | 1.80   | 2.30         | 3.03  | 4.00  | 4.70             | 5.77  | 6.60  | 7.61   | 390           | 960                |
|       | 460.726            | 0    | -       | -       | CE     | -      | -      | -      | 2.95   | 2.00   | 3.62         | 4.77  | 6.30  | 7.41             | 9.09  | 10.40 | 11.99  | 390           | 960                |
|       | 460.746<br>460.766 | 0    | -       | -       | CE     | -      | -      | -      | 3.30   | 1.90   | 4.08<br>4.59 | 5.38  | 7.10  | 8.35<br>9.41     | 10.24 | 11.72 | 13.52  | 390<br>390    | 960<br>960         |
|       | 460.806            | 0    |         |         | CE     | _      | _      |        | 3.70   | 2.70   | 5.74         | 7.58  | 10.00 | 11.76            | 14.43 | 16.51 | 19.04  | 390           | 960                |
|       | 460.846            | 0    | _       | _       | CE     | _      | _      | _      | 4.05   | 3.20   | 7.18         | 9.47  | 12.50 | 14.70            | 18.03 | 20.63 | 23.80  | 390           | 960                |
|       | 460.886            | 0    | _       |         | CE     | CG     |        | _      | 4.70   | 3.10   | 9.19         | 12.13 | 16.00 | 18.82            | 23.08 | 26.41 | 30.46  | 390           | 960                |
|       | 460.926            | 0    | _       | _       | -      | CG     | _      | _      | 5.10   | 2.80   | 10.00        | 14.14 | 20.00 | 24.49            | 28.28 | 31.62 | 44.72  | 390           | 960                |
|       | 460.966            | 0    | -       | -       | _      | CG     | _      | _      | 5.80   | 3.80   | 14.36        | 18.95 | 25.00 | 29.40            | 36.07 | 41.26 | 47.59  | 390           | 960                |
|       | 461.006            | 0    | -       | -       | _      | CG     | _      | -      | 6.40   | 3.80   | 18.09        | 23.87 | 31.50 | 37.05            | 45.45 | 51.99 | 59.97  | 390           | 960                |
|       | 461.046            | O    | -       | -       | -      | -      | CK*    | -      | 7.20   | 5.30   | 22.97        | 30.31 | 40.00 | 47.04            | 57.71 | 66.02 | 76.15  | 390           | 960                |
|       | 461.086            | 0    | -       | -       | -      | -      | -      | AM     | 8.40   | 5.00   | 25.00        | 35.36 | 50.00 | 61.24            | 70.71 | 79.06 | 111.80 | 390           | 860                |

 $\mathsf{B} = \mathsf{bore} \; \mathsf{diameter} \cdot \mathsf{E} = \mathsf{narrowest} \; \mathsf{free} \; \mathsf{cross} \; \mathsf{section}$ 

\* Connection 3/4 BSPT

Example Type + Material no. + Code = Ordering no. for ordering: 460.524 + 5E + CA = 460.524.5E.CA

Continued on next page.

# Axial-flow full cone nozzles **Series 460/461**



| Spray<br>angle | Ordering no.  Mat. no. Code |                                         |    |       |       |       |          |        | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |       |       |       | <b>V</b> [l/min] |       |       |       | Spray dia     | ameter D<br>2 bar |
|----------------|-----------------------------|-----------------------------------------|----|-------|-------|-------|----------|--------|----------------|----------------|-------|-------|-------|------------------|-------|-------|-------|---------------|-------------------|
|                | Type                        | TASS TASS TASS TASS TASS TASS TASS TASS |    |       |       |       |          | ٩      |                |                |       |       |       | <b>p</b> [bar]   |       |       |       |               |                   |
|                |                             | PVDF                                    |    | 1/4 B | 3/8 B | 1/2 B | 3/4 BSPP | 1 BSPP |                |                | 0.5   | 1.0   | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | H =<br>200 mm | H =<br>500 mm     |
| 120°           | 460.368                     | 0                                       | CA | -     | -     | -     | -        | -      | 0.95           | 0.45           | 0.32  | 0.45  | 0.63  | 0.77             | 0.89  | 1.00  | 1.41  | 680           | 1,220             |
|                | 460.408                     | 0                                       | CA | -     | -     | -     | -        | -      | 1.20           | 0.85           | 0.57  | 0.76  | 1.00  | 1.18             | 1.44  | 1.65  | 1.90  | 680           | 1,220             |
|                | 460.488                     | 0                                       | CA | -     | -     | -     | -        | -      | 1.50           | 1.00           | 0.92  | 1.21  | 1.60  | 1.88             | 2.31  | 2.64  | 3.05  | 680           | 1,220             |
|                | 460.528                     | 0                                       | CA | -     | -     | -     | -        | -      | 1.65           | 1.20           | 1.15  | 1.52  | 2.00  | 2.35             | 2.89  | 3.30  | 3.81  | 680           | 1,220             |
|                | 460.608                     | 0                                       | CA | -     | -     | -     | -        | -      | 2.10           | 1.40           | 1.81  | 2.39  | 3.15  | 3.70             | 4.54  | 5.20  | 6.00  | 680           | 1,220             |
|                | 460.648                     | 0                                       | -  | CC    | CE    | -     | -        | -      | 2.45           | 1.60           | 2.30  | 3.03  | 4.00  | 4.70             | 5.77  | 6.60  | 7.61  | 680           | 1,330             |
|                | 460.728                     | 0                                       | -  | -     | CE    | -     | -        | -      | 3.10           | 1.90           | 3.62  | 4.77  | 6.30  | 7.41             | 9.09  | 10.40 | 11.99 | 680           | 1,330             |
|                | 460.748                     | 0                                       | -  | -     | CE    | -     | -        | -      | 3.30           | 1.90           | 4.08  | 5.38  | 7.10  | 8.35             | 10.24 | 11.72 | 13.52 | 680           | 1,330             |
|                | 460.768                     | 0                                       | -  | -     | CE    | -     | -        | -      | 3.50           | 1.90           | 4.59  | 6.44  | 8.00  | 9.41             | 11.54 | 13.20 | 15.22 | 680           | 1,330             |
|                | 460.808                     | 0                                       | -  | -     | CE    | -     | -        | -      | 3.80           | 2.40           | 5.74  | 7.58  | 10.00 | 11.76            | 14.43 | 16.51 | 19.04 | 680           | 1,330             |
|                | 460.848                     | 0                                       | -  | -     | CE    | -     | -        | -      | 4.20           | 2.70           | 7.18  | 9.47  | 12.50 | 14.70            | 18.03 | 20.63 | 23.80 | 680           | 1,330             |
|                | 460.888                     | 0                                       | -  | -     | -     | CG    | -        | -      | 4.60           | 3.10           | 9.19  | 12.13 | 16.00 | 18.82            | 23.08 | 26.41 | 30.46 | 680           | 1,330             |
|                | 460.968                     | 0                                       | -  | -     | -     | CG    | -        | -      | 5.90           | 4.10           | 14.36 | 18.95 | 25.00 | 29.40            | 36.07 | 41.26 | 47.59 | 680           | 1,330             |
|                | 461.048                     | $\otimes$                               | -  | -     | -     | -     | CK*      | -      | 7.60           | 4.90           | 22.97 | 30.31 | 40.00 | 47.04            | 57.71 | 66.02 | 76.15 | 680           | 1,330             |

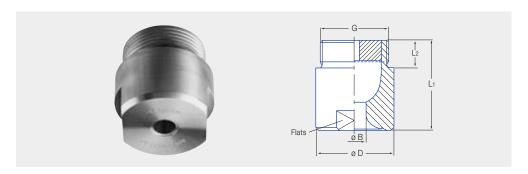
 $B = bore diameter \cdot E = narrowest free cross section$ 

Material PP (material no. 53)
 \* Connection 3/4 BSPT

+ Material no. + Code = Ordering no. Example Туре for ordering: 460.368 + CA = 460.368.5E.CA



## Axial-flow full cone nozzles


## Series 405



#### Very uniform spray pattern.

#### **Applications:**

Surface spraying, spraying over packings, cleaning and washing process, chemical process engineering, cooling of gaseous fluids and solids, water treatment.



|            | Dimensi        | ons [mm]       |    |       | Weight  |
|------------|----------------|----------------|----|-------|---------|
| G          | L <sub>1</sub> | L <sub>2</sub> | D  | Flats | 316L SS |
| 1 1/4 BSPP | 50             | 19             | 49 | 41    | 525 g   |
| 1 1/2 BSPP | 60             | 19             | 59 | 50    | 920 g   |
| 2 BSPP     | 78             | 24             | 68 | 60    | 1,550 g |

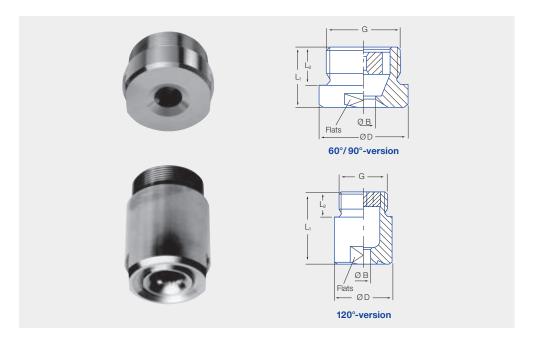
Other nozzle sizes and materials are available on

| Spray | Ord     | ering n  | 0.     |         |      | В         | E         |     |     | <b>V</b> [l/ | min] |     |     |              | ameter D   |
|-------|---------|----------|--------|---------|------|-----------|-----------|-----|-----|--------------|------|-----|-----|--------------|------------|
| angle |         | Mat.     |        | Code    |      | Ø<br>[mm] | Ø<br>[mm] |     |     |              |      |     |     | at p =       | 2 bar      |
| A     | Туре    | 1Y<br>SS | 4 BSPP | /2 BSPP | SPP  | []        | []        |     |     | <b>p</b> [   | bar] |     |     | <u>"</u>     | _          |
|       |         | 316L     | 1 1/4  | 1 1/    | 2 B8 |           |           | 0.3 | 0.5 | 1.0          | 2.0  | 3.0 | 5.0 | H =<br>0.5 m | H =<br>1 m |
| 60°   | 405.204 | 0        | AP     | -       | -    | 11.20     | 5.80      | 47  | 57  | 76           | 100  | 118 | 144 | 560          | 1,040      |
|       | 405.284 | 0        | -      | AR      | -    | 14.30     | 7.00      | 75  | 92  | 121          | 160  | 188 | 231 | 580          | 1,080      |
|       | 405.324 | 0        | -      | -       | AV   | 16.40     | 7.50      | 94  | 115 | 152          | 200  | 235 | 289 | 580          | 1,080      |
|       | 405.364 | 0        | -      | -       | AV   | 18.40     | 8.50      | 117 | 144 | 189          | 250  | 294 | 361 | 580          | 1,080      |
|       | 405.404 | 0        | -      | -       | AV   | 20.00     | 7.00      | 147 | 181 | 239          | 315  | 370 | 454 | 580          | 1,100      |
| 90°   | 405.206 | 0        | AP     | -       | -    | 12.00     | 5.00      | 47  | 57  | 76           | 100  | 118 | 144 | 780          | 1,450      |
|       | 405.286 | 0        | -      | AR      | -    | 15.20     | 6.20      | 75  | 92  | 121          | 160  | 188 | 231 | 800          | 1,550      |
|       | 405.326 | 0        | -      | -       | AV   | 17.20     | 7.70      | 94  | 115 | 152          | 200  | 235 | 289 | 850          | 1,600      |
|       | 405.366 | 0        | -      | -       | AV   | 19.50     | 8.70      | 117 | 144 | 189          | 250  | 294 | 361 | 850          | 1,600      |
|       | 405.406 | 0        | -      | -       | AV   | 22.00     | 9.50      | 147 | 181 | 239          | 315  | 370 | 454 | 850          | 1,600      |
| 120°  | 405.208 | 0        | AP     | -       | -    | 12.70     | 5.00      | 47  | 57  | 76           | 100  | 118 | 144 | 1,450        | 2,600      |
|       | 405.288 | 0        | -      | AR      | -    | 16.00     | 6.60      | 75  | 92  | 121          | 160  | 188 | 231 | 1,500        | 2,700      |
|       | 405.328 | 0        | -      | -       | AV   | 17.80     | 7.90      | 94  | 115 | 152          | 200  | 235 | 289 | 1,500        | 2,800      |
|       | 405.368 | 0        | -      | -       | AV   | 20.10     | 8.80      | 117 | 144 | 189          | 250  | 294 | 361 | 1,500        | 2,800      |
|       | 405.408 | 0        | -      | -       | AV   | 22.40     | 9.10      | 147 | 181 | 239          | 315  | 370 | 454 | 1,500        | 2,800      |

 $B = bore diameter \cdot E = narrowest free cross section$ 

Example + Material-no. + Code = Ordering no. Туре AP = 405.204.1Y.AP for ordering: 405.204








### Very uniform spray pattern.

#### **Applications:**

Surface spraying, spraying over packings, chemical process engineering, cooling of gaseous fluids and solids.



Other nozzle sizes and materials are available on request

#### 60°/90°-version

| D                                  | imensions | [mm]           |                |     |       | \A/aiabt |
|------------------------------------|-----------|----------------|----------------|-----|-------|----------|
| Type                               | BSPP      | L <sub>1</sub> | L <sub>2</sub> | D   | Flats | Weight   |
| 403.444/403.446<br>403.484/403.486 | 2 1/2     | 52             | 27             | 83  | 75    | 1,300 g  |
| 403.524/403. 526                   | 3         | 60             | 30             | 98  | 85    | 2,000 g  |
| 403.564/403.604/403.606            | 3 1/2     | 70             | 32             | 118 | 105   | 3,600 g  |
| 403.624                            | 4         | 90             | 36             | 128 | 110   | 5,500 g  |

#### 120°-version

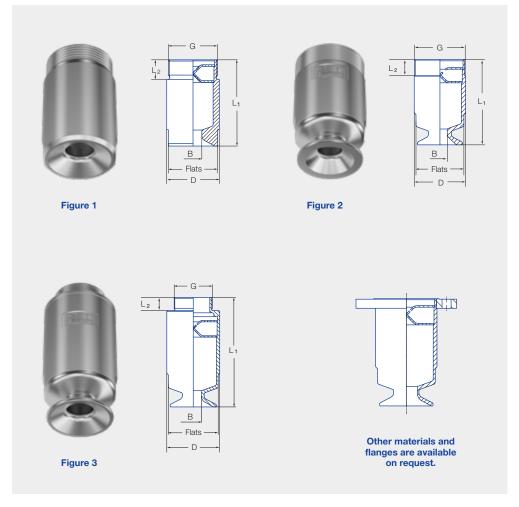
| Dimensions [mm] |                                                 |     |    |     |     |         |  |  |  |  |  |  |  |  |
|-----------------|-------------------------------------------------|-----|----|-----|-----|---------|--|--|--|--|--|--|--|--|
| Type            | Type BSPP L <sub>1</sub> L <sub>2</sub> D Flats |     |    |     |     |         |  |  |  |  |  |  |  |  |
| 403.448/403.488 | 2 1/2                                           | 124 | 27 | 83  | 75  | 3,200 g |  |  |  |  |  |  |  |  |
| 403.528         | 3                                               | 153 | 30 | 98  | 85  | 5,400 g |  |  |  |  |  |  |  |  |
| 403.608         | 3 1/2                                           | 156 | 32 | 118 | 105 | 8,300 g |  |  |  |  |  |  |  |  |
| 403.628         | 4                                               | 165 | 36 | 128 | 110 | 9,600 g |  |  |  |  |  |  |  |  |

| Spray angle | Ordering no. | Mat. | B<br>Ø | E<br>Ø |     |     |     | <b>Ÿ</b> [l/min] |       |       |       | Spray dia<br>at p = | ameter D<br>2 bar |
|-------------|--------------|------|--------|--------|-----|-----|-----|------------------|-------|-------|-------|---------------------|-------------------|
| A           | Type         | no.  | [mm]   | [mm]   |     |     |     | <b>p</b> [bar]   |       | 1     | 1     |                     | , <del></del>     |
|             |              | 316L |        |        | 0.3 | 0.5 | 1.0 | 2.0              | 3.0   | 5.0   | 7.0   | H =<br>0.5 m        | H =<br>1 m        |
| 60°         | 403.444      | 0    | 25.00  | 6.00   | 187 | 230 | 303 | 400              | 470   | 577   | 660   | 580                 | 1,100             |
|             | 403.484      | 0    | 29.50  | 9.00   | 234 | 287 | 379 | 500              | 588   | 721   | 825   | 620                 | 1,150             |
|             | 403.524      | 0    | 32.00  | 8.00   | 295 | 362 | 477 | 630              | 741   | 909   | 1,040 | 620                 | 1,150             |
|             | 403.564      | 0    | 38.00  | 14.00  | 375 | 459 | 606 | 800              | 941   | 1,154 | 1,320 | 620                 | 1,150             |
|             | 403.604      | 0    | 41.50  | 10.00  | 468 | 574 | 758 | 1,000            | 1,176 | 1,443 | 1,651 | 630                 | 1,200             |
|             | 403.624      | 0    | 48.50  | 15.00  | 585 | 718 | 947 | 1,250            | 1,470 | 1,903 | 2,063 | 770                 | 1,400             |
| 90°         | 403.446      | 0    | 25.00  | 12.00  | 187 | 230 | 303 | 400              | 470   | 577   | 660   | 900                 | 1,700             |
|             | 403.486      | 0    | 29.50  | 12.00  | 234 | 287 | 379 | 500              | 588   | 721   | 825   | 900                 | 1,700             |
|             | 403.526      | 0    | 32.00  | 13.80  | 295 | 362 | 477 | 630              | 741   | 909   | 1,040 | 900                 | 1,700             |
|             | 403.606      | 0    | 40.00  | 15.00  | 468 | 574 | 758 | 1,000            | 1,176 | 1,443 | 1,651 | 980                 | 1,750             |
| 120°        | 403.448      | 0    | 25.50  | 10.00  | 187 | 230 | 303 | 400              | 470   | 577   | 660   | 1,500               | 2,850             |
|             | 403.488      | 0    | 29.50  | 11.00  | 234 | 287 | 379 | 500              | 588   | 721   | 825   | 1,500               | 2,850             |
|             | 403.528      | 0    | 32.00  | 15.00  | 295 | 362 | 477 | 630              | 741   | 909   | 1,040 | 1,500               | 2,850             |
|             | 403.608      | 0    | 42.00  | 12.00  | 468 | 574 | 758 | 1,000            | 1,176 | 1,443 | 1,651 | 1,500               | 2,850             |
|             | 403.628      | 0    | 45.00  | 15.00  | 585 | 718 | 947 | 1,250            | 1,470 | 1,903 | 2,063 | 1,600               | 2,900             |

 $B = bore diameter \cdot E = narrowest free cross section$ 

Example Type + Material no. = Ordering no. for ordering: 403.444 + 1Y = 430.444.1Y






## FreeFlow

Particularly insensitive to clogging thanks to very large free cross sections. Stable spray angle. Uniform spray pattern.

#### **Applications:**

Gas washing, spraying over packings, dust control, absorption, distillation column



| Corou          |         |      |        |            | Dimen          | sions [mr      | n]  |       |         |
|----------------|---------|------|--------|------------|----------------|----------------|-----|-------|---------|
| Spray<br>angle | Type    | Code | Figure |            |                |                |     |       | Weight  |
| arigie         |         |      |        | G          | L <sub>1</sub> | L <sub>2</sub> | D   | Flats |         |
|                | 419.3XX | AR   | 3      | 1 1/2 BSPP | 132            | 22             | 64  | 60    | 1,500 g |
|                | 419.5   | AV   | 1      | 2 BSPP     | 114            | 24             | 64  | 60    | 1,200 g |
|                | 440 4   | AV   | 3      | 2 BSPP     | 163            | 24             | 80  | 75    | 2,000 g |
|                | 419.4XX | AY   | 2      | 2 1/2 BSPP | 134            | 27             | 80  | 75    | 1,700 g |
|                |         | AV   | 3      | 2 BSPP     | 199            | 24             | 102 | 95    | 3,700 g |
| 90°            | 419.51X | AY   | 3      | 2 1/2 BSPP | 202            | 27             | 102 | 95    | 3,800 g |
| +              | 419.54X | LA   | 3      | 3 BSPP     | 205            | 30             | 102 | 95    | 5,200 g |
| 120°           |         | LC   | 2      | 3 1/2 BSPP | 169            | 32             | 102 | 95    | 3,200 g |
|                |         | AY   | 3      | 2 1/2 BSPP | 231            | 27             | 115 | 105   | 5,200 g |
|                | 419.57X | LA   | 3      | 3 BSPP     | 233            | 30             | 115 | 105   | 5,200 g |
|                |         | LE   | 2      | 4 BSPP     | 194            | 36             | 115 | 105   | 4,400 g |
|                | 419.6XX | LA   | 3      | 3 BSPP     | 252            | 30             | 122 | 115   | 5,400 g |
|                | 419.0   | LC   | 3      | 3 1/2 BSPP | 254            | 32             | 122 | 115   | 5,500 g |

# Axial-flow full cone nozzles Series 419 »FreeFlow«

| Spray  |         |           |        | Orde     | ring no |          |        |          |          | В         | E         |     |              | <b>V</b> [[/:-1          |        |       |                  | liameter          |
|--------|---------|-----------|--------|----------|---------|----------|--------|----------|----------|-----------|-----------|-----|--------------|--------------------------|--------|-------|------------------|-------------------|
| angle* |         | Mat       | .no.   |          |         | Co       | de     |          |          | Ø<br>[mm] | Ø<br>[mm] |     |              | <b>V</b> [l/min]         |        |       | D [r<br>at p =   | nmj<br>: 1 bar    |
| A      | Туре    | <b>1Y</b> | 2P     | BSPP     |         | BSPP     |        | BSPP     | <u>ū</u> |           |           |     | <b>p</b> [ba | r] (p <sub>max</sub> = 1 | 0 bar) |       |                  | 3                 |
|        |         | 316 L SS  | 2 BSPP | 1 1/2 BS | 2 BSPP  | 2 1/2 BS | 3 BSPP | 3 1/2 BS | 4 A BSPP |           |           | 0.3 | 0.5          | 1.0                      | 2.0    | 5.0   | H =<br>500<br>mm | H =<br>1000<br>mm |
| 90°    | 419.366 | 0         | 0      | AR       | AV      | -        | -      | -        | -        | 18.0      | 17.5      | 117 | 144          | 189                      | 250    | 361   | 1,000            | 2,000             |
|        | 419.396 | 0         | 0      | AR       | AV      | -        | -      | -        | -        | 20.5      | 17.5      | 140 | 172          | 227                      | 300    | 433   | 1,000            | 2,000             |
|        | 419.446 | 0         | 0      | -        | AV      | AY       | -      | -        | -        | 23.0      | 20.5      | 187 | 230          | 303                      | 400    | 577   | 1,000            | 2,000             |
|        | 419.486 | 0         | 0      | -        | AV      | AY       | -      | -        | -        | 28.0      | 20.5      | 234 | 287          | 379                      | 500    | 721   | 1,000            | 2,000             |
|        | 419.516 | 0         | 0      | -        | AV      | AY       | LA     | LC       | -        | 27.2      | 24.1      | 281 | 345          | 455                      | 600    | 866   | 1,000            | 2,000             |
|        | 419.546 | 0         | 0      | -        | AV      | AY       | LA     | LC       | -        | 33.0      | 24.1      | 332 | 408          | 538                      | 710    | 1,024 | 1,000            | 2,000             |
|        | 419.576 | 0         | 0      | -        | -       | AY       | LA     | -        | LE       | 34.0      | 27.2      | 398 | 488          | 644                      | 850    | 1,226 | 1,000            | 2,000             |
|        | 419.606 | 0         | 0      | -        | -       | -        | LA     | LC       | -        | 37.5      | 30.1      | 468 | 574          | 758                      | 1,000  | 1,443 | 1,000            | 2,000             |
|        | 419.626 | 0         | 0      | -        | -       | -        | LA     | LC       | -        | 43.0      | 30.1      | 585 | 718          | 947                      | 1,250  | 1,803 | 1,000            | 2,000             |
| 120°   | 419.368 | 0         | 0      | AR       | AV      | -        | -      | -        | -        | 20.5      | 17.4      | 117 | 144          | 189                      | 250    | 361   | 1,700            | 2,900             |
|        | 419.398 | 0         | 0      | AR       | AV      | -        | -      | -        | -        | 23.5      | 17.4      | 140 | 172          | 227                      | 300    | 433   | 1,700            | 2,900             |
|        | 419.448 | 0         | 0      | -        | AV      | AY       | -      | -        | -        | 24.5      | 20.5      | 187 | 230          | 303                      | 400    | 577   | 1,700            | 2,900             |
|        | 419.488 | 0         | 0      | -        | AV      | AY       | -      | -        | -        | 29.5      | 20.5      | 234 | 287          | 379                      | 500    | 721   | 1,700            | 2,900             |
|        | 419.518 | 0         | 0      | -        | AV      | AY       | LA     | LC       | -        | 27.2      | 24.1      | 281 | 345          | 455                      | 600    | 866   | 1,700            | 2,900             |
|        | 419.548 | 0         | 0      | -        | AV      | AY       | LA     | LC       | -        | 34.0      | 24.1      | 332 | 408          | 538                      | 710    | 1,024 | 1,700            | 2,900             |
|        | 419.578 | 0         | 0      | -        | -       | AY       | LA     | -        | LE       | 34.0      | 28.6      | 398 | 488          | 644                      | 850    | 1,226 | 1,700            | 2,900             |
|        | 419.608 | 0         | 0      | -        | -       | -        | LA     | LC       | -        | 38.0      | 32.2      | 468 | 574          | 758                      | 1,000  | 1,443 | 1,700            | 2,900             |
|        | 419.628 | 0         | 0      | -        | -       | -        | LA     | LC       | -        | 43.5      | 32.2      | 585 | 718          | 947                      | 1,250  | 1,803 | 1,700            | 2,900             |

 $\mathsf{B} = \mathsf{bore} \ \mathsf{diameter} \cdot \mathsf{E} = \mathsf{narrowest} \ \mathsf{free} \ \mathsf{cross} \ \mathsf{section} \cdot {}^\star \ \mathsf{Spray} \ \mathsf{angle} \ \mathsf{at} \ \mathsf{1} \ \mathsf{bar}$ 

| Example       | Type    | + | Material-no. | + | Code | = | Ordering no.  |
|---------------|---------|---|--------------|---|------|---|---------------|
| for ordering: | 419.366 | + | 1Y           |   | AR   | = | 419.366.1Y.AR |



## Axial-flow full cone nozzles

### Series 421



#### Even full cone distribution, high flow rates.

#### **Applications:**

Scrubber, for even surface irrigation, cooling and cleaning of gases, water recooling, column irrigation and for improving chemical reactions via surface enlargement.

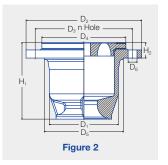


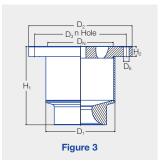


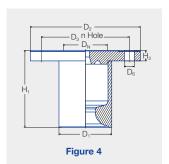
Other nozzle sizes and materials are available on

| Spray  | Ordering | no.   |         |       | В    | Е    |       |       | <b>V</b> (1)/                   | minl                    |        |        |
|--------|----------|-------|---------|-------|------|------|-------|-------|---------------------------------|-------------------------|--------|--------|
| angle* |          | 1     | Mat. no |       | Ø    | Ø    |       |       | <b>V</b> [I/                    | minj                    |        |        |
|        |          | 05.84 | 1Y.84   | 53.00 | [mm] | [mm] |       |       |                                 |                         |        |        |
|        | Type     | iron  | SS      |       |      |      |       |       | <b>p</b> [bar] (p <sub>ma</sub> | <sub>ax</sub> = 10 bar) |        |        |
|        |          | 12    | 9F S    |       |      |      |       |       |                                 |                         |        |        |
|        |          | Cast  | 316     | Ь     |      |      | 0.3   | 0.5   | 1.0                             | 2.0                     | 5.0    | 10.0   |
| 60°    | 421.564  | 0     | -       | 0     | 37   | 12   | 375   | 459   | 606                             | 800                     | 1,154  | 1,523  |
|        | 421.604  | 0     | -       | 0     | 39   | 14   | 468   | 574   | 758                             | 1,000                   | 1,443  | 1,904  |
|        | 421.624  | 0     | 0       | 0     | 41   | 13   | 585   | 718   | 947                             | 1,250                   | 1,803  | 2,380  |
|        | 421.644  | 0     | 0       | 0     | 49   | 16   | 749   | 919   | 1,213                           | 1,600                   | 2,308  | 3,046  |
|        | 421.664  | 0     | 0       | 0     | 56   | 16   | 936   | 1,149 | 1,516                           | 2,000                   | 2,885  | 3,807  |
|        | 421.684  | 0     | 0       | 0     | 58   | 21   | 1,171 | 1,436 | 1,895                           | 2,500                   | 3,607  | 4,759  |
|        | 421.704  | 0     | 0       | 0     | 65   | 24   | 1,475 | 1,809 | 2,387                           | 3,150                   | 4,545  | 5,997  |
|        | 421.724  | -     | 0       | 0     | 72   | 30   | 1,873 | 2,297 | 3,031                           | 4,000                   | 5,771  | 7,615  |
|        | 421.744  | -     | 0       | 0     | 81   | 34   | 2,341 | 2,872 | 3,789                           | 5,000                   | 7,214  | 9,518  |
|        | 421.764  | -     | 0       | 0     | 88   | 35   | 2,950 | 3,618 | 4,775                           | 6,300                   | 9,089  | 11,993 |
|        | 421.784  | -     | 0       | 0     | 99   | 39   | 3,746 | 4,595 | 6,063                           | 8,000                   | 11,542 | 15,229 |
|        | 421.804  | -     | 0       | -     | 112  | 42   | 4,682 | 5,743 | 7,579                           | 10,000                  | 14,427 | 19,037 |
|        | 421.824  | -     | 0       | -     | 125  | 52   | 5,853 | 7,179 | 9,473                           | 12,500                  | 18,034 | 23,796 |
| 90°    | 421.566  | 0     | -       | 0     | 37   | 15   | 375   | 459   | 606                             | 800                     | 1,154  | 1,523  |
|        | 421.606  | 0     | -       | 0     | 39   | 15   | 468   | 574   | 758                             | 1,000                   | 1,443  | 1,904  |
|        | 421.626  | 0     | 0       | 0     | 43   | 19   | 585   | 718   | 947                             | 1,250                   | 1,803  | 2,380  |
|        | 421.646  | 0     | 0       | 0     | 53   | 22   | 749   | 919   | 1,213                           | 1,600                   | 2,308  | 3,046  |
|        | 421.666  | 0     | 0       | 0     | 56   | 24   | 936   | 1,149 | 1,516                           | 2,000                   | 2,885  | 3,807  |
|        | 421.686  | 0     | 0       | 0     | 59   | 28   | 1,171 | 1,436 | 1,895                           | 2,500                   | 3,607  | 4,759  |
|        | 421.706  | 0     | 0       | 0     | 66   | 32   | 1,475 | 1,809 | 2,387                           | 3,150                   | 4,545  | 5,997  |
|        | 421.726  | -     | 0       | 0     | 72   | 35   | 1,873 | 2,297 | 3,031                           | 4,000                   | 5,771  | 7,615  |
|        | 421.746  | -     | 0       | 0     | 81   | 40   | 2,341 | 2,872 | 3,789                           | 5,000                   | 7,214  | 9,518  |
|        | 421.766  | -     | 0       | 0     | 93   | 39   | 2,950 | 3,618 | 4,775                           | 6,300                   | 9,089  | 11,993 |
|        | 421.786  | -     | 0       | 0     | 99   | 44   | 3,746 | 4,595 | 6,063                           | 8,000                   | 11,542 | 15,229 |
|        | 421.806  | -     | 0       | 0     | 123  | 53   | 4,682 | 5,743 | 7,579                           | 10,000                  | 14,427 | 19,037 |
|        | 421.826  | -     | 0       | -     | 125  | 54   | 5,853 | 7,179 | 9,473                           | 12,500                  | 18,034 | 23,796 |
| 120°   | 421.568  | 0     | 0       | 0     | 36   | 15   | 375   | 459   | 606                             | 800                     | 1,154  | 1,523  |
|        | 421.608  | 0     | 0       | 0     | 41   | 15   | 468   | 574   | 758                             | 1,000                   | 1,443  | 1,904  |
|        | 421.628  | 0     | 0       | 0     | 43   | 19   | 585   | 718   | 947                             | 1,250                   | 1,803  | 2,380  |
|        | 421.648  | 0     | 0       | 0     | 53   | 22   | 749   | 919   | 1,213                           | 1,600                   | 2,308  | 3,046  |
|        | 421.668  | 0     | 0       | 0     | 55   | 24   | 936   | 1,149 | 1,516                           | 2,000                   | 2,885  | 3,807  |
|        | 421.688  | 0     | 0       | 0     | 59   | 28   | 1,171 | 1,436 | 1,895                           | 2,500                   | 3,607  | 4,759  |
|        | 421.708  | 0     | 0       | 0     | 66   | 32   | 1,475 | 1,809 | 2,387                           | 3,150                   | 4,545  | 5,997  |
|        | 421.728  | -     | 0       | 0     | 72   | 35   | 1,873 | 2,297 | 3,031                           | 4,000                   | 5,771  | 7,615  |
|        | 421.748  | -     | 0       | 0     | 81   | 40   | 2,341 | 2,872 | 3,789                           | 5,000                   | 7,214  | 9,518  |
|        | 421.768  | -     | 0       | 0     | 88   | 39   | 2,950 | 3,618 | 4,775                           | 6,300                   | 9,089  | 11,993 |
|        | 421.788  | -     | 0       | 0     | 99   | 44   | 3,746 | 4,595 | 6,063                           | 8,000                   | 11,542 | 15,229 |
|        | 421.808  | -     | 0       | 0     | 108  | 53   | 4,682 | 5,743 | 7,579                           | 10,000                  | 14,427 | 19,037 |
|        | 421.828  | -     | 0       | 0     | 121  | 54   | 5,853 | 7,179 | 9,473                           | 12,500                  | 18,034 | 23,796 |


B = bore diameter  $\cdot$  E = narrowest free cross section \* Spray angle at p = 2 bar





## Axial-flow full cone nozzles


### Series 421







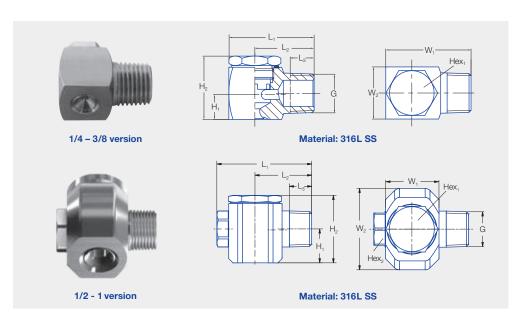




| Spray angle                             | Туре                | Mat. no.                         | Fig.             |                          |                      |                          | Dimensio                 | ons [mm]                 |                      |                      |                          | Flange      | e hole               |
|-----------------------------------------|---------------------|----------------------------------|------------------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------|--------------------------|-------------|----------------------|
|                                         |                     |                                  |                  | H <sub>1</sub>           | H <sub>2</sub>       | D <sub>1</sub>           | D <sub>2</sub>           | D <sub>3</sub>           | D <sub>4</sub>       | D <sub>5</sub>       | D <sub>N</sub>           | Number      | D <sub>6</sub>       |
| 60°-90°<br>120°<br>120°<br>60°-120°     | 421.56x/<br>421.60x | 05.84<br>05.84<br>1Y.84<br>53.00 | 1<br>1<br>3<br>4 | 134<br>140<br>140<br>131 | 39<br>39<br>19<br>44 | 96<br>96<br>96<br>99     | 200<br>200<br>200<br>200 | 160<br>160<br>160<br>160 | 122<br>122<br>-<br>- | 121<br>121<br>-<br>- | 80<br>80<br>80<br>80     | 8<br>8<br>8 | 18<br>18<br>18<br>18 |
| 60°-120°                                | 421.62x             | 05.84<br>1Y.84<br>53.00          | 1<br>3<br>4      | 156<br>156<br>156        | 28<br>20<br>53       | 113<br>108<br>117        | 220<br>220<br>220        | 180<br>180<br>180        | 158<br>-<br>-        | 141<br>-<br>-        | 100<br>100<br>100        | 8<br>8<br>8 | 18<br>18<br>18       |
| 60°-90°<br>120°<br>60°-120°<br>60°-120° | 421.64x/<br>421.66x | 05.84<br>05.84<br>1Y.84<br>53.00 | 2<br>2<br>3<br>4 | 175<br>175<br>175<br>175 | 42<br>29<br>19<br>57 | 140<br>140<br>135<br>141 | 250<br>250<br>250<br>250 | 210<br>210<br>210<br>210 | 188<br>188<br>-<br>- | 166<br>166<br>-      | 125<br>125<br>125<br>125 | 8<br>8<br>8 | 18<br>18<br>18<br>18 |
| 60°-120°                                | 421.68x/<br>421.70x | 05.84<br>1Y.84<br>53.00          | 2<br>3<br>4      | 186<br>186<br>186        | 38<br>27<br>51       | 170<br>160<br>171        | 285<br>285<br>285        | 240<br>240<br>240        | 207<br>-<br>-        | 195<br>-<br>-        | 150<br>150<br>150        | 8<br>8<br>8 | 22<br>22<br>23       |
| 60°-120°                                | 421.72x/<br>421.74x | 1Y.84<br>53.00                   | 3<br>4           | 250<br>250               | 33<br>50             | 214<br>225               | 340<br>340               | 295<br>295               | -                    | -                    | 200<br>200               | 8<br>8      | 22<br>23             |
| 60°-120°                                | 421.76x/<br>421.78x | 1Y.84<br>53.00                   | 3<br>4           | 300<br>300               | 39<br>53             | 264<br>280               | 395<br>395               | 350<br>350               |                      |                      | 250<br>250               | 12<br>12    | 22<br>23             |
| 60°-120°                                | 421.80x/<br>421.82x | 1Y.84<br>53.00                   | 3<br>4           | 367<br>367               | 49<br>57             | 315<br>328               | 445<br>445               | 400<br>400               | -<br>-               | -<br>360             | 300<br>300               | 12<br>12    | 22<br>23             |

Example Type + Material no. = Ordering no. for ordering: 421.564 + 05.84 = 421.564.05.84




# Tangential-flow full cone nozzles **Series 422/423**



**Tangentially arranged** liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.

#### **Applications:**

Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving of chemical reactions, continuous casting, foam control.



|          |                |                | Dimen          | sions [m       | m]             |                |                |      |                  | Weight  |
|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------|------------------|---------|
| G        | L <sub>1</sub> | L <sub>2</sub> | L <sub>3</sub> | H <sub>1</sub> | H <sub>2</sub> | W <sub>1</sub> | W <sub>2</sub> | Hex₁ | Hex <sub>2</sub> | 316L SS |
| 1/4 BSPT | 28.0           | 20.0           | 9.7            | 8.0            | 21.0           | 15.6           | 16.0           | 11   | -                | 44 g    |
| 3/8 BSPT | 36.0           | 25.0           | 10.1           | 11.0           | 26.7           | 23.2           | 22.0           | 19   | -                | 101 g   |
| 1/2 BSPT | 56.0           | 33.5           | 13.2           | 20.0           | 40.0           | 32.0           | 48.0           | 27   | 19               | 310 g   |
| 3/4 BSPT | 65.5           | 38.5           | 14.5           | 23.5           | 57.0           | 40.0           | 63.0           | 36   | 27               | 830 g   |
| 1 BSPT   | 85.0           | 48.5           | 16.8           | 27.3           | 66.0           | 55.0           | 78.0           | 41   | 36               | 1,581 g |

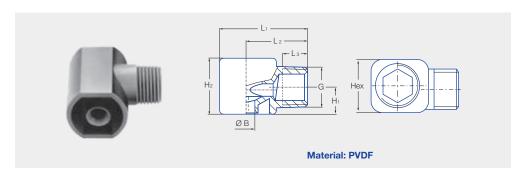
| Spray |         |             | Orderi | ng no. |       |       |      | В         | E<br>Ø |                |       |        | <b>V</b> [l/min] |               |        |        | Spray dia | ameter D |
|-------|---------|-------------|--------|--------|-------|-------|------|-----------|--------|----------------|-------|--------|------------------|---------------|--------|--------|-----------|----------|
| angle |         | Mat-<br>no. |        |        | Code  |       |      | Ø<br>[mm] | [mm]   |                |       |        |                  |               |        |        | at p =    | 2 Dai    |
|       | Туре    | 1Y<br>SS    | BSPT   | BSPT   | BSPT  | BSPT  | SPT  |           |        | <b>p</b> [bar] |       |        |                  |               |        |        |           |          |
|       |         | 316L        | 1/4 E  | 3/8 E  | 1/2 E | 3/4 E | 1 BS |           |        | 0.5            | 1.0   | 10.0   | H =<br>200 mm    | H =<br>500 mm |        |        |           |          |
| 60°   | 422.644 | 0           | -      | CE     | -     | -     | -    | 3.00      | 3.00   | 2.00           | 2.83  | 4.00   | 4.90             | 6.32          | 7.48   | 8.94   | 225       | 510      |
| 90°   | 422.406 | 0           | СС     | -      | -     | -     | -    | 1.40      | 1.40   | 0.50           | 0.71  | 1.00   | 1.22             | 1.58          | 1.87   | 2.24   | 380       | 860      |
|       | 422.486 | 0           | CC     | -      | -     | -     | -    | 1.85      | 1.85   | 0.80           | 1.13  | 1.60   | 1.96             | 2.53          | 2.99   | 3.58   | 380       | 860      |
|       | 422.566 | 0           | CC     | -      | -     | -     | -    | 2.25      | 2.25   | 1.25           | 1.77  | 2.50   | 3.06             | 3.95          | 4.68   | 5.59   | 380       | 860      |
|       | 422.606 | 0           | -      | CE     | -     | -     | -    | 2.55      | 2.55   | 1.57           | 2.23  | 3.15   | 3.86             | 4.98          | 5.89   | 7.04   | 380       | 860      |
|       | 422.646 | 0           | -      | CE     | -     | -     | -    | 2.90      | 2.90   | 2.00           | 2.83  | 4.00   | 4.90             | 6.32          | 7.48   | 8.94   | 390       | 960      |
|       | 422.766 | 0           | -      | CE     | -     | -     | -    | 4.15      | 4.15   | 4.00           | 5.66  | 8.00   | 9.80             | 12.65         | 14.97  | 17.89  | 390       | 960      |
|       | 422.846 | 0           | -      | CE     | -     | -     | -    | 5.30      | 5.30   | 6.25           | 8.84  | 12.50  | 15.31            | 19.76         | 23.39  | 27.95  | 390       | 960      |
|       | 422.886 | 0           | -      | CE     | -     | -     | -    | 5.85      | 5.85   | 8.00           | 11.31 | 16.00  | 19.60            | 25.30         | 29.93  | 35.78  | 390       | 960      |
|       | 422.966 | 0           | -      | -      | CG    | -     | -    | 8.00      | 8.00   | 12.50          | 17.68 | 25.00  | 30.62            | 39.53         | 46.77  | 55.90  | 390       | 960      |
| 120°  | 422.568 | 0           | CC     | -      | -     | -     | -    | 2.45      | 2.40   | 1.25           | 1.77  | 2.50   | 3.06             | 3.95          | 4.68   | 5.59   | 680       | 1,220    |
|       | 422.728 | 0           | -      | CE     | -     | -     | -    | 4.00      | 3.90   | 3.15           | 4.45  | 6.30   | 7.72             | 9.96          | 11.79  | 14.09  | 680       | 1,600    |
|       | 422.808 | 0           | -      | CE     | -     | -     | -    | 4.90      | 4.90   | 5.00           | 7.07  | 10.00  | 12.25            | 15.81         | 18.71  | 22.36  | 680       | 1,600    |
|       | 422.848 | 0           | -      | CE     | -     | -     | -    | 5.30      | 5.30   | 6.25           | 8.84  | 12.50  | 15.31            | 19.76         | 23.39  | 27.95  | 680       | 1,600    |
|       | 422.888 | 0           | -      | CE     | -     | -     | -    | 6.60      | 6.00   | 8.00           | 11.31 | 16.00  | 19.60            | 25.30         | 29.93  | 35.78  | 680       | 1,600    |
|       | 422.928 | 0           | -      | -      | CG    | -     | -    | 7.30      | 7.30   | 10.00          | 14.14 | 20.00  | 24.49            | 31.62         | 37.42  | 44.72  | 680       | 1,600    |
|       | 422.968 | 0           | -      | -      | CG    | -     | -    | 8.00      | 8.00   | 12.50          | 17.68 | 25.00  | 30.62            | 39.53         | 46.77  | 55.90  | 680       | 1,600    |
|       | 423.008 | 0           | -      | -      | CG    | -     | -    | 8.70      | 8.70   | 15.75          | 22.27 | 31.50  | 38.88            | 49.81         | 58.93  | 70.44  | 680       | 1,600    |
|       | 423.128 | 0           | -      | -      | -     | CK    | -    | 12.70     | 12.30  | 31.50          | 44.55 | 63.00  | 77.16            | 99.61         | 117.86 | 140.87 | 680       | 1,600    |
|       | 423.208 | 0           | -      | -      | -     | -     | CM   | 17.00     | 16.00  | 50.00          | 70.71 | 100.00 | 122.47           | 158.11        | 187.08 | 223.61 | 680       | 1,600    |

 $B = bore diameter \cdot E = narrowest free cross section$ 

+ Material-no. + Code = Ordering no. Example Туре for ordering: 422.644 + CE = 422.644.1Y.CE






# Tangential-flow full cone nozzles **Plastic version**

## **Series 422/423**

**Tangentially arranged** liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.

#### **Applications:**

Cleaning and washing processes, surface spraying, bottle cleaning, keg cleaning, sausage showers, foam control, degassing, pasteurization.



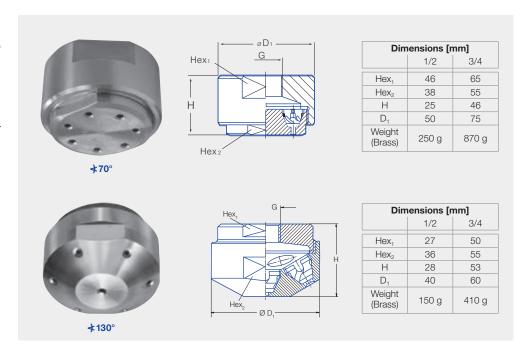
|          |                | Dimensi        | ons [mn        | ո]             |                |      | Weight |
|----------|----------------|----------------|----------------|----------------|----------------|------|--------|
| G        | L <sub>1</sub> | L <sub>2</sub> | L <sub>3</sub> | H <sub>1</sub> | H <sub>2</sub> | Hex  |        |
| 1/4 BSPT | 28.0           | 20.0           | 9.8            | 8.0            | 16.0           | 16.0 | 7 g    |
| 3/8 BSPT | 36.0           | 25.0           | 10.1           | 11.2           | 23.0           | 22.0 | 16 g   |
| 1/2 BSPT | 49.5           | 33.5           | 13.2           | 19.2           | 38.0           | 32.0 | 40 g   |
| 3/4 BSPT | 58.5           | 38.5           | 18.5           | 24.5           | 50.0           | 41.0 | 50 g   |

| Spray |         | Order       | ing no.  |          |          |          | B<br>Ø | E<br>Ø |       |       | <b>V</b> [l/ | min]  |       |        | Spray di      | ameter D<br>I-10 bar |
|-------|---------|-------------|----------|----------|----------|----------|--------|--------|-------|-------|--------------|-------|-------|--------|---------------|----------------------|
| angle |         | Mat.<br>no. |          | Co       | de       |          | [mm]   | [mm]   |       |       |              |       |       |        |               | -10 bai              |
|       | Туре    | 5E          | T        | эΤ       | Σ        | эΤ       |        |        |       |       | <b>p</b> [l  | oar]  |       |        |               |                      |
|       |         | PVDF        | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPT |        |        | 0.5   | 1.0   | 2.0          | 3.0   | 5.0   | 10.0   | H =<br>200 mm | H =<br>500 mm        |
| 60°   | 422.724 | 0           | -        | CE       | -        | -        | 3.60   | 3.60   | 3.15  | 4.45  | 6.30         | 7.72  | 9.96  | 14.09  | 225           | 510                  |
| 90°   | 422.406 | 0           | СС       | -        | -        | -        | 1.50   | 1.45   | 0.50  | 0.71  | 1.00         | 1.22  | 1.58  | 2.24   | 380           | 860                  |
|       | 422.566 | 0           | CC       | -        | -        | -        | 2.30   | 2.20   | 1.25  | 1.77  | 2.50         | 3.06  | 3.95  | 5.59   | 380           | 860                  |
|       | 422.606 | 0           | -        | CE       | -        | -        | 2.60   | 2.50   | 1.57  | 2.23  | 3.15         | 3.86  | 4.98  | 7.04   | 380           | 860                  |
|       | 422.646 | 0           | -        | CE       | -        | -        | 3.00   | 2.90   | 2.00  | 2.83  | 4.00         | 4.90  | 6.32  | 8.94   | 390           | 960                  |
|       | 422.726 | 0           | -        | CE       | -        | -        | 3.70   | 3.60   | 3.15  | 4.45  | 6.30         | 7.72  | 9.96  | 14.09  | 390           | 960                  |
|       | 422.806 | 0           | -        | CE       | -        | -        | 4.65   | 4.60   | 5.00  | 7.07  | 10.00        | 12.25 | 15.81 | 22.36  | 390           | 960                  |
|       | 422.846 | 0           | -        | CE       | -        | -        | 5.20   | 5.10   | 6.25  | 8.84  | 12.50        | 15.31 | 19.76 | 27.95  | 390           | 960                  |
|       | 422.886 | 0           | -        | CE       | -        | -        | 5.85   | 5.85   | 8.00  | 11.31 | 16.00        | 19.60 | 25.30 | 35.78  | 390           | 960                  |
|       | 422.926 | 0           | -        | -        | CG       | -        | 7.30   | 7.30   | 10.00 | 14.14 | 20.00        | 24.49 | 31.62 | 44.72  | 390           | 960                  |
|       | 422.966 | 0           | -        | -        | CG       | -        | 8.00   | 8.00   | 12.50 | 17.68 | 25.00        | 30.62 | 39.53 | 55.90  | 390           | 960                  |
|       | 423.006 | 0           | -        | -        | CG       | -        | 8.70   | 8.70   | 15.75 | 22.27 | 31.50        | 38.58 | 49.81 | 70.44  | 390           | 960                  |
|       | 423.126 | 0           | -        | -        | -        | CK       | 12.00  | 12.00  | 31.50 | 44.55 | 63.00        | 77.16 | 99.61 | 140.87 | 390           | 960                  |
| 120°  | 422.408 | 0           | CC       | -        | -        | -        | 1.50   | 1.45   | 0.50  | 0.71  | 1.00         | 1.22  | 1.58  | 2.24   | 680           | 1,220                |
|       | 422.448 | 0           | CC       | -        | -        | -        | 1.65   | 1.60   | 0.62  | 0.88  | 1.25         | 1.53  | 1.98  | 2.80   | 680           | 1,220                |
|       | 422.488 | 0           | CC       | -        | -        | -        | 1.90   | 1.80   | 0.80  | 1.13  | 1.60         | 1.96  | 2.53  | 3.58   | 680           | 1,220                |
|       | 422.568 | 0           | CC       | -        | -        | -        | 2.30   | 2.20   | 1.25  | 1.77  | 2.50         | 3.06  | 3.95  | 5.59   | 680           | 1,220                |
|       | 422.728 | 0           | -        | CE       | -        | -        | 3.70   | 3.60   | 3.15  | 4.45  | 6.30         | 7.72  | 9.96  | 14.09  | 680           | 1,600                |
|       | 422.888 | 0           | -        | CE       | -        | -        | 5.80   | 5.70   | 8.00  | 11.31 | 16.00        | 19.60 | 25.30 | 35.78  | 680           | 1,600                |
|       | 422.968 | 0           | -        | -        | CG       | -        | 8.00   | 8.00   | 12.50 | 17.68 | 25.00        | 30.62 | 39.53 | 55.90  | 680           | 1,600                |
|       | 423.008 | 0           | -        | -        | CG       | -        | 8.70   | 8.70   | 15.75 | 22.27 | 31.50        | 38.58 | 49.81 | 70.44  | 680           | 1,600                |
|       | 423.128 | 0           | -        | -        | -        | CK       | 12.70  | 12.30  | 31.50 | 44.55 | 63.00        | 77.16 | 99.61 | 140.87 | 680           | 1,600                |

 $B = bore diameter \cdot E = narrowest free cross section$ 

Туре + Material-no. + Code = Ordering no. of ordering: 422.724 + CE = 422.724.5E.CE








Fine full cone atomization with the aid of several hollow cones spraying into one another.

#### **Applications:**

Cooling of gaseous and solid material, desuperheating, chlorine precipitation, absorption as well as for improvement of chemical reaction by enlarging the contact area.

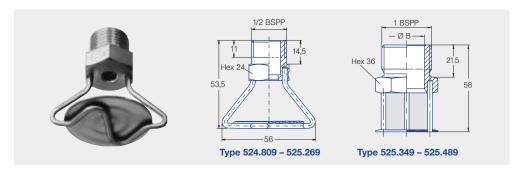


| Spray angle | Ordering no.       |                      |       | G          | B<br>Ø       | E<br>Ø       |                |                | <b>V</b> [l/   | min]           |                |                | Spray dia      | ameter D<br>: 2 bar |
|-------------|--------------------|----------------------|-------|------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------|
| aligie      |                    | Mat                  | . no. |            | [mm]         | [mm]         |                |                |                |                |                |                | ut p =         |                     |
|             | Туре               | 171                  | 30    |            |              |              |                |                | <b>p</b> [l    | oar]           |                |                |                |                     |
|             | 1,700              | 316Ti SS/<br>316L SS | Brass | BSPP       |              |              | 0.5            | 1.0            | 2.0            | 3.0            | 5.0            | 10.0           | H =<br>1000 mm | H = 2000 mm         |
| 70°         | 502.445            | 0                    | 0     | 1/2        | 1.00         | 0.50         | -              | -              | 1.25           | 1.53           | 1.98           | 2.80           | 400            | 400                 |
|             | 502.545            | 0                    | 0     | 1/2        | 1.80         | 0.50         | -              | 1.58           | 2.24           | 2.74           | 3.54           | 5.01           | 400            | 400                 |
|             | 502.585            | 0                    | 0     | 3/4        | 1.00         | 1.00         | 1.40           | 1.98           | 2.80           | 3.43           | 4.43           | 6.30           | 600            | 700                 |
|             | 502.665            | 0                    | 0     | 3/4        | 1.40         | 1.40         | 2.20           | 3.18           | 4.50           | 5.51           | 7.11           | 10.10          | 800            | 900                 |
|             | 502.745            | 0                    | 0     | 3/4        | 2.00         | 2.00         | 3.50           | 5.00           | 7.10           | 8.70           | 11.20          | 15.90          | 800            | 900                 |
|             | 502.795            | 0                    | 0     | 3/4        | 2.50         | 2.00         | 4.60           | 6.70           | 9.50           | 11.60          | 15.00          | 21.20          | 900            | 1,100               |
|             | 502.835            | 0                    | 0     | 3/4        | 3.00         | 2.00         | 6.00           | 8.30           | 11.80          | 14.50          | 18.70          | 26.40          | 1,000          | 1,200               |
|             | 502.875            | 0                    | 0     | 3/4        | 3.50         | 2.00         | 7.20           | 10.60          | 15.00          | 18.40          | 23.70          | 33.50          | 1,100          | 1,300               |
|             | 502.905            | 0                    | 0     | 3/4        | 4.00         | 2.00         | 8.80           | 12.70          | 18.00          | 22.05          | 28.40          | 40.20          | 1,200          | 1,500               |
|             | 502.985            | 0                    | 0     | 3/4        | 3.50         | 2.00         | 14.00          | 19.80          | 28.00          | 34.29          | 44.30          | 62.60          | 1,200          | 1,500               |
|             | 503.025            | 0                    | 0     | 3/4        | 4.00         | 2.00         | 17.70          | 25.10          | 35.50          | 43.48          | 56.10          | 79.40          | 1,200          | 1,600               |
|             | 503.065<br>503.115 | 0                    | 0     | 3/4<br>3/4 | 5.00<br>6.00 | 2.00         | 22.10<br>30.00 | 31.80<br>42.00 | 45.00<br>60.00 | 55.11<br>72.80 | 71.10<br>95.00 | 100.60         | 1,200<br>1,300 | 1,800<br>2,000      |
|             |                    |                      |       |            |              |              | 30.00          | 42.00          |                |                |                |                |                |                     |
| 130°        | 502.448            | 0                    | 0     | 1/2        | 1.00         | 0.50         | -              | -              | 1.25           | 1.53           | 1.98           | 2.80           | 500            | 500                 |
|             | 502.548            | 0                    | 0     | 1/2        | 1.80         | 0.50         | -              | 1.58           | 2.24           | 2.74           | 3.54           | 5.01           | 700            | 700                 |
|             | 502.588            | 0                    | 0     | 3/4        | 1.00         | 1.00         | 1.40           | 1.98           | 2.80           | 3.43           | 4.43           | 6.30           | 800            | 900                 |
|             | 502.668<br>502.748 | 0                    | 0     | 3/4<br>3/4 | 1.50         | 1.50<br>2.00 | 2.20<br>3.50   | 3.18<br>5.00   | 4.50<br>7.10   | 5.51<br>8.70   | 7.11<br>11.20  | 10.10<br>15.90 | 1,000          | 1,100<br>1,200      |
|             | 502.748            | 0                    | 0     | 3/4        | 2.50         | 2.00         | 4.60           | 6.70           | 9.50           | 11.60          | 15.00          | 21.20          | 1,200          | 1,300               |
|             | 502.798            | 0                    | 0     | 3/4        | 3.00         | 2.00         | 6.00           | 8.30           | 11.80          | 14.50          | 18.70          | 26.40          | 1,400          | 1,600               |
|             | 502.878            | 0                    | 0     | 3/4        | 3.50         | 2.00         | 7.20           | 10.60          | 15.00          | 18.40          | 23.70          | 33.50          | 1,500          | 1,700               |
|             | 502.908            | 0                    | 0     | 3/4        | 4.00         | 2.00         | 8.80           | 12.70          | 18.00          | 22.05          | 28.40          | 40.20          | 1,500          | 1,800               |
|             | 502.988            | 0                    | 0     | 3/4        | 3.50         | 2.00         | 14.00          | 19.80          | 28.00          | 34.29          | 44.30          | 62.60          | 1,500          | 1,800               |
|             | 503.028            | 0                    | 0     | 3/4        | 4.00         | 2.00         | 17.70          | 25.10          | 35.50          | 43.48          | 56.10          | 79.40          | 1,600          | 1,800               |
|             | 503.068            | 0                    | 0     | 3/4        | 5.00         | 2.00         | 22.10          | 31.80          | 45.00          | 55.11          | 71.10          | 100.60         | 2,000          | 2,500               |
|             | 503.118            | O                    | Ö     | 3/4        | 6.00         | 2.00         | 30.00          | 42.00          | 60.00          | 72.80          | 95.00          | 134.00         | 2,000          | 3,000               |

 $<sup>^{\</sup>mbox{\tiny 1}}$  We reserve the right to deliver 316Ti SS or 316L SS under the material no. 17.

 $B = bore diameter \cdot E = narrowest free cross section$ 




# Deflector-plate nozzle **Series 524/525**



Full cone spray. Non clogging nozzle without swirl insert.

#### **Applications:**

Fire fighting and broadcast spraying, wide area spray.



| Spray<br>angle | Ordering I | T                    |       | B<br>Ø |        |            | <b>Ý</b> [l/ | min]   |        |          |         | ameter D<br>ar approx. |
|----------------|------------|----------------------|-------|--------|--------|------------|--------------|--------|--------|----------|---------|------------------------|
| A              | Туре       | 17¹                  | 30    | [mm]   |        |            |              |        | T H    |          |         |                        |
|                |            | 316TI SS/<br>316L SS | Brass |        | 0.5    | H =<br>1 m | H =<br>3 m   |        |        |          |         |                        |
| 180°           | 524.809    | 0                    | 0     | 4.00   | 5.00   | 7.10       | 10.00        | 12.20  | 15.80  | 22.40    | 5.60 m  | 6.40 m                 |
|                | 524.939    | 0                    | 0     | 5.90   | 10.60  | 15.00      | 21.20        | 25.90  | 33.50  | 47.40    | 6.00 m  | 7.00 m                 |
|                | 524.969    | 0                    | 0     | 6.20   | 12.50  | 17.70      | 25.00        | 30.60  | 39.50  | 55.90    | 8.00 m  | 9.00 m                 |
|                | 525.049    | 0                    | 0     | 8.00   | 20.00  | 28.30      | 40.00        | 49.00  | 63.20  | 89.40    | 10.00 m | 13.20 m                |
|                | 525.109    | -                    | 0     | 9.30   | 28.00  | 40.00      | 56.00        | 69.00  | 89.00  | 125.00   | 10.20 m | 13.40 m                |
|                | 525.169    | -                    | 0     | 10.90  | 40.00  | 57.00      | 80.00        | 98.00  | 126.00 | 179.00   | 10.60 m | 13.60 m                |
|                | 525.229    | -                    | 0     | 12.20  | 56.00  | 79.00      | 112.00       | 137.00 | 177.00 | 250.00   | 6.80 m  | 10.40 m                |
|                | 525.269    | 0                    | 0     | 12.30  | 70.00  | 99.00      | 140.00       | 171.00 | 221.00 | 313.00   | 5.20 m  | 10.20 m                |
|                | 525.349    | 0                    | 0     | 16.20  | 112.00 | 158.40     | 224.00       | 274.30 | 354.20 | 500.80   | 4.80 m  | 9.70 m                 |
|                | 525.469    | 0                    | 0     | 23.80  | 222.70 | 315.00     | 445.50       | 545.60 | 704.40 | 996.20   | 4.50 m  | 9.50 m                 |
|                | 525.489    | 0                    | 0     | 25.30  | 250.00 | 353.60     | 500.00       | 612.40 | 790.60 | 1,118.00 | 4.00 m  | 9.00 m                 |

<sup>&</sup>lt;sup>1</sup> We reserve the right to deliver 316Ti SS or 316L SS under the material no. 17.

Version with dust protection cap on request.

| Example      | Туре    | + | Material-no. | = | Ordering no. |
|--------------|---------|---|--------------|---|--------------|
| of ordering: | 524.809 | + | 30           | = | 524.809.30   |



### Rotating cleaning nozzle »NanoSpinner 2« Series 5M1



- Compact design for confined spaces
- Hygienic design
- Suitable for high temperatures
- Made entirely of stainless steel 316L or Alloy 22

#### Cleaning efficiency class:

#### **Materials:**

Stainless steel 316L, Alloy 22

#### Max. temperature:

250 °C

#### Recommended operating pressure:

2 bar

#### Installation:

Operation in every direction is possible

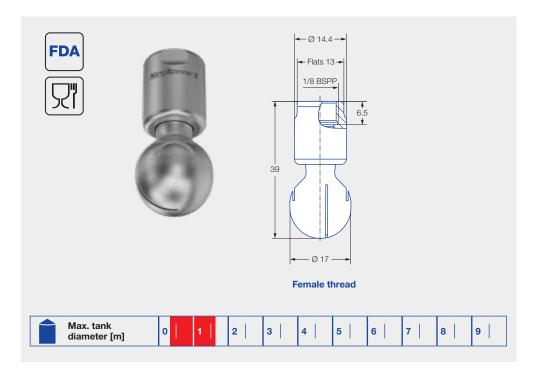
#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of stainless steel 316L, Alloy 22










#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/ medialibrary



| Spray<br>angle | Oı      | rdering<br>Mater        |          |          | Narrowest free cross section |     | Ý w             | ater [l/r             | nin]   | Max. tank<br>diameter<br>[m] |
|----------------|---------|-------------------------|----------|----------|------------------------------|-----|-----------------|-----------------------|--------|------------------------------|
|                |         | 1Y                      | 21       |          | Ø<br>[mm]                    |     | p [bar          | ] (p <sub>max</sub> = | 7 bar) | [11]                         |
|                | Туре    | Stainless steel<br>316L | Alloy 22 | 1/8 BSPP |                              | 1.0 | 2.0             | <b>15</b> 18 5        |        |                              |
| 360°           | 5M1.879 | •                       | •        | AB       | 0.4                          | 11  | 11 <b>15</b> 18 |                       | 5      | 1.4                          |
|                | 5M1.929 | •                       | •        | AB       | 0.5                          | 14  |                 |                       |        | 1.6                          |

NPT thread, weld-on and slip-on versions on request.

The maximum tank diameter applies to the recommended operating pressure and is meant as a recommendation only. The cleaning result is also affected by the type of soiling.

Compressed air should be used for dry blowing for a short time only. Operation above the recommended operating pressure has a negative impact on the cleaning result and wear.

Type + Material no. + Connection = Ordering no. of ordering: 5M1.879. + 1Y + AB = 5M1.879.1Y.AB





### Rotating cleaning nozzle »MicroSpinner 2« Series 5M2





- Suitable for high temperatures
- Made entirely of stainless steel 316L or Alloy 22

#### Cleaning efficiency class:

#### **Materials:**

Stainless steel 316L, Alloy 22

#### Max. temperature:

250 °C

#### Recommended operating pressure:

2 bar

#### Installation:

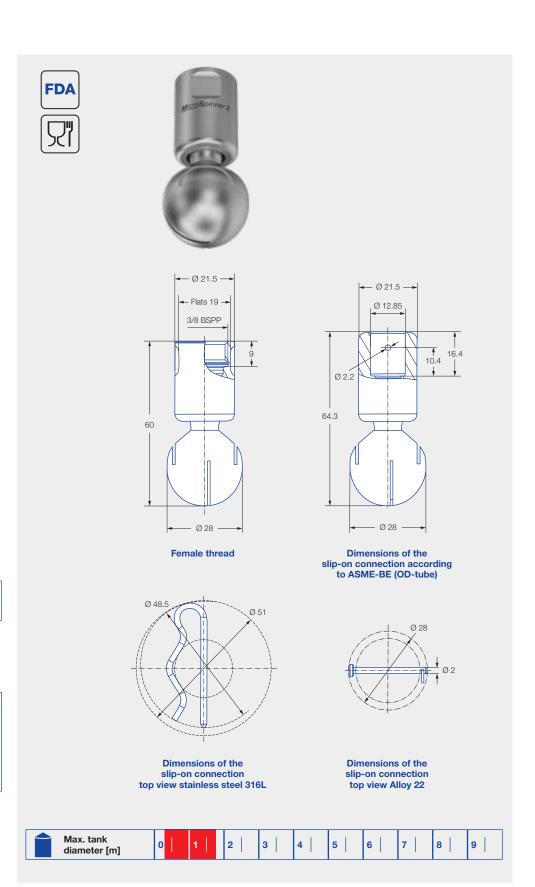
Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of stainless steel 316L, Alloy 22


**Adapter:** 3/8 BSPP is compatible with HygienicFit





#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/ medialibrary



## \*

## Rotating cleaning nozzle »MicroSpinner 2« Series 5M2



| Spray | 0       | rdering                 | no.      |          |              | Narrowest free     |     | Ýt         | F1/:1                   |                           | Max. tank       |
|-------|---------|-------------------------|----------|----------|--------------|--------------------|-----|------------|-------------------------|---------------------------|-----------------|
| angle |         | Mater                   | ial no.  |          |              | cross section<br>Ø |     | V water    | [I/min]                 |                           | diameter<br>[m] |
|       |         | 1Y                      | 21       | Conn     | ection       | [mm]               |     | p [bar] (p | <sub>nax</sub> = 7 bar) |                           | ('')            |
|       | Туре    | Stainless steel<br>316L | Alloy 22 | 3/8 BSPP | 1/2"-Slip-on |                    | 1.0 | 2.0        | 3.0                     | at 40 psi<br>[US gal/min] |                 |
| 60°   | 5M2.952 | •                       | •        | AF       | TF05         | 1.5                | 16  | 23         | 28                      | 7                         | -               |
|       | 5M2.042 | •                       | •        | AF       | TF05         | 3.0                | 28  | 40         | 49                      | 12                        | -               |
| 180°  | 5M2.004 | •                       | •        | AF       | TF05         | 0.9                | 22  | 32         | 39                      | 10                        | 1.8             |
| 360°  | 5M2.969 | •                       | •        | AF       | TF05         | 0.8                | 18  | 25         | 31                      | 8                         | 1.7             |
|       | 5M2.049 | •                       | •        | AF       | TF05         | 0.9                | 28  | 39         | 48                      | 12                        | 1.8             |

NPT thread, weld-on and further slip-on versions on request.

The max. tank diameter shown above applies for the recommended operating pressure and has to be seen as a recommendation. The cleaning result is also affected by the type of soiling.

Operating with compressed air only for short-term usage. Operation above the recommended operating pressure has negative effects on the cleaning result and wear.

#### Slip-on information:

- Pin made of stainless steel 316L included (Ordering-no. 05M.230.1Y.00.00.0). Version made of Alloy 22 bolt with head incl. pin included (Ordering-no. 05M.231.21.00.00.0).
- Depending on diameter of the adapter, the flow rate increase due to leakage between connecting pipe and rotating cleaning nozzle.
- Minimum insertion diameter (with mounted pin) is 48,5 mm for the types made of stainless steel 316L and 28 mm for the types made of Alloy 22.

Example Type + Material no. + Connection = Ordering no. of ordering: 5M2.952. + 1Y + AF = 5M2.952.1Y.AF



## Rotating cleaning nozzle »MiniSpinner 2« Series 5M3



- Hygienic design
- Suitable for high temperatures
- Made entirely of stainless steel 316L or Alloy 22

## Cleaning efficiency class:

2

#### Materials:

Stainless steel 316L, Alloy 22

### Max. temperature:

250 °C

## Recommended operating pressure:

2 bar

#### Installation:

Operation in every direction is possible

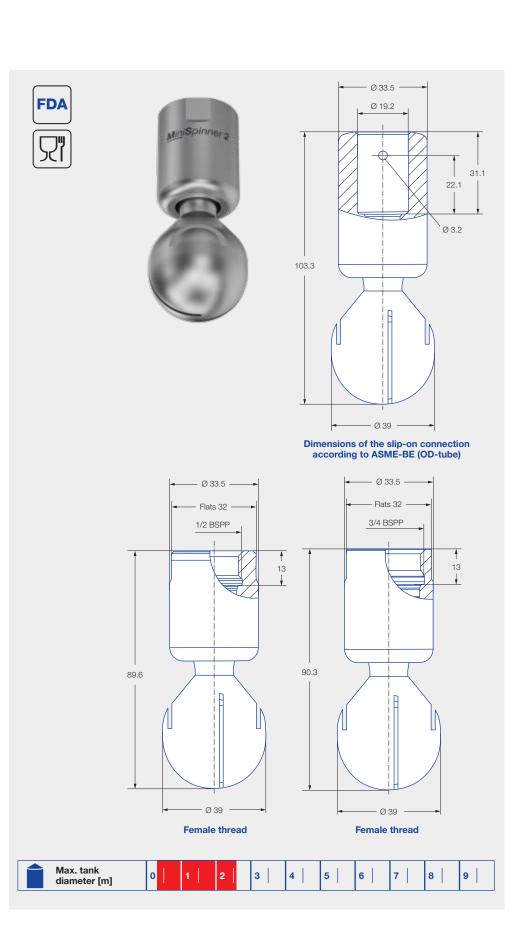
#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of stainless steel 316L, Alloy 22

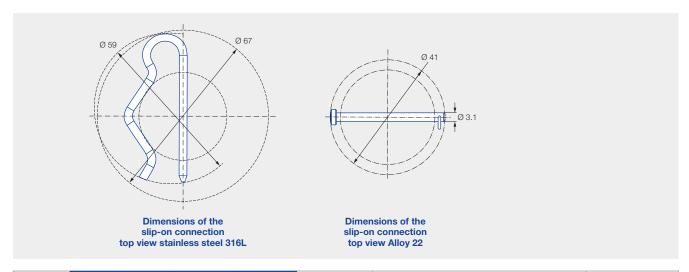
#### Adapter:


1/2 BSPP and 3/4 BSPP are compatible with HygienicFit





#### **Function video**


Scan the QR-code or go to: https://www.lechler.com/de-en/medialibrary



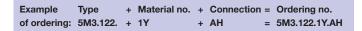
## \*

## Rotating cleaning nozzle »MiniSpinner 2« Series 5M3





| Spray |         | Orde                    | ering no | ).       |          |              | Narrowest free     |     | Ý wate     | er [l/min]                |                           | Max. tank       |
|-------|---------|-------------------------|----------|----------|----------|--------------|--------------------|-----|------------|---------------------------|---------------------------|-----------------|
| angle |         | Mater                   | ial no.  | C        | onnecti  | on           | cross section<br>Ø |     | v wate     | # [1/111111]              |                           | diameter<br>[m] |
|       |         | 1Y                      | 21       |          |          |              | [mm]               |     | p [bar] (p | o <sub>max</sub> = 7 bar) |                           | [,,,]           |
|       | Туре    | Stainless steel<br>316L | Alloy 22 | 1/2 BSPP | 3/4 BSPP | 3/4"-Slip-on |                    | 1.0 | 2.0        | 3.0                       | at 40 psi<br>[US gal/min] |                 |
| 60°   | 5M3.122 | •                       | •        | АН       |          | TF07         | 2.6                | 45  | 63         | 77                        | 20                        | -               |
| 180°  | 5M3.133 | •                       | •        |          | AL       | TF07         | 1.2                | 47  | 67         | 82                        | 21                        | 2.6             |
| 180°  | 5M3.134 | •                       | •        |          | AL       | TF07         | 1.3                | 47  | 67         | 82                        | 21                        | 2.6             |
| 360°  | 5M3.999 | •                       | •        |          | AL       | TF07         | 0.4                | 21  | 30         | 37                        | 9                         | 1.8             |
|       | 5M3.089 | •                       | •        |          | AL       | TF07         | 0.7                | 35  | 49         | 60                        | 15                        | 2.1             |
|       | 5M3.139 | •                       | •        |          | AL       | TF07         | 0.8                | 49  | 69         | 85                        | 21                        | 2.3             |
|       | 5M3.209 | •                       | •        |          | AL       | TF07         | 1.5                | 71  | 100        | 122                       | 31                        | 2.6             |


NPT thread, weld-on and further slip-on versions on request.

The max. tank diameter shown above applies for the recommended operating pressure and has to be seen as a recommendation. The cleaning result is also affected by the type of soiling.

Operating with compressed air only for short-term usage. Operation above the recommended operating pressure has negative effects on the cleaning result and wear.

#### Slip-on information:

- Pin made of stainless steel 316L included (Ordering-no. 05M.330.1Y.00.00.0). Version made of Alloy 22 bolt with head incl. pin included (Ordering-no. 05M.332.21.00.00.0).
- Depending on diameter of the adapter, the flow rate increase due to leakage between connecting pipe and rotating cleaning nozzle.
- Minimum insertion diameter (with mounted pin) is 59 mm for the types made of stainless steel 316L and 41 mm for the types made of Alloy 22.





## Rotating cleaning nozzle »Maxi Spinner 2« Series 5M4



- Hygienic design
- Suitable for high temperatures
- Made entirely of stainless steel 316L or Alloy 22

## Cleaning efficiency class:

2

#### Materials:

Stainless steel 316L, Alloy 22

### Max. temperature:

250 °C

## Recommended operating pressure:

2 bar

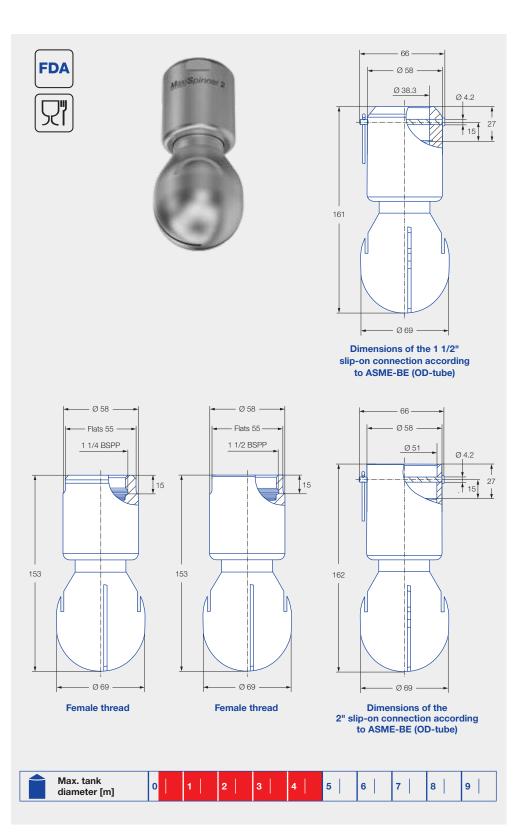
#### Installation:

Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:


Double ball bearing made of stainless steel 316L, Alloy 22

#### Adapter:

1 1/4 BSPP and 1 1/2 BSPP are compatible with HygienicFit







medialibrary



## Rotating cleaning nozzle »Maxi Spinner 2« Series 5M4



| Spray |         | C                       | Orderin  | g no.      |            |                |            | Narrowest             |     |            | El /i1                   |                           | Max. tank       |
|-------|---------|-------------------------|----------|------------|------------|----------------|------------|-----------------------|-----|------------|--------------------------|---------------------------|-----------------|
| angle |         | Mater                   | ial no.  |            | Conn       | ection         |            | free cross<br>section |     | v wat      | er [l/min]               |                           | diameter<br>[m] |
|       |         | 1Y                      | 21       |            |            |                |            | Ø<br>[mm]             |     | p [bar] (p | o <sub>max</sub> = 7 baı | r)*                       | [11]            |
|       | Type    | Stainless steel<br>316L | Alloy 22 | 1 1/4 BSPP | 1 1/2 BSPP | 1 1/2" Slip-on | 2"-Slip-on |                       | 1,0 | 2,0        | 3.0                      | at 40 psi<br>[US gal/min] |                 |
| 180°  | 5M4.253 | •                       | •        | AQ         | AS         | TF15           | TF20       | 1.8                   | 95  | 135        | 165                      | 42                        | 4.0             |
| 180°  | 5M4.254 | •                       | •        | AQ         | AS         | TF15           | TF20       | 2.1                   | 95  | 135        | 165                      | 42                        | 4.0             |
| 270°  | 5M4.365 | •                       | •        | AQ         | AS         | TF15           | TF20       | 2.5                   | 177 | 250        | 306                      | 78                        | 5.0             |
| 360°  | 5M4.279 | •                       | •        | AQ         | AS         | TF15           | TF20       | 1.7                   | 107 | 150        | 184                      | 46                        | 4.0             |
|       | 5M4.329 | •                       | •        | AQ         | AS         | TF15           | TF20       | 2.0                   | 141 | 200        | 245                      | 62                        | 4.5             |
|       | 5M4.369 | •                       | •        | AQ         | AS         | TF15           | TF20       | 2.3                   | 177 | 250        | 306                      | 78                        | 5.0             |

NPT thread and weld-on versions on request.

The max. tank diameter shown above applies for the recommended operating pressure and has to be seen as a recommendation. The cleaning result is also affected by the type of soiling.

Operating with compressed air only for short-term usage. Operation above the recommended operating pressure has negative effects on the cleaning result and wear.

#### Slip-on information:

- Bolt with head incl. pin made of stainless steel 316L included (Ordering-no. 05M.431.1Y.00.00.0). Version made of Alloy 22 bolt with head incl. pin included (Ordering-no. 05M.431.21.00.00.0).
- Depending on diameter of the adapter, the flow rate increase due to leakage between connecting pipe and rotating cleaning nozzle.
- Minimum insertion diameter (with mounted pin) is 69 mm for the types made of stainless steel 316L and also for the types made of Alloy 22.

Example Type + Material no. + Connection = Ordering no. of ordering: 5M4.253. + 1Y + AQ = 5M4.253.1Y.AQ

<sup>\*</sup> Please note the maximum operating pressure of 4 bar for the 2" slip-on connection.



## Rotating cleaning nozzle **»Whirly 2« Series 5W9**



- Popular and proven design
- Cleaning with effective flat jets
- Various connection options
- Available with a wide range of flow rates and spray angles

## Cleaning efficiency class:

3

#### Materials:

Stainless steel 316L, PEEK

#### Max. temperature:

140 °C

## Recommended operating pressure:

2 bar

#### Installation:

Operation in every direction is possible

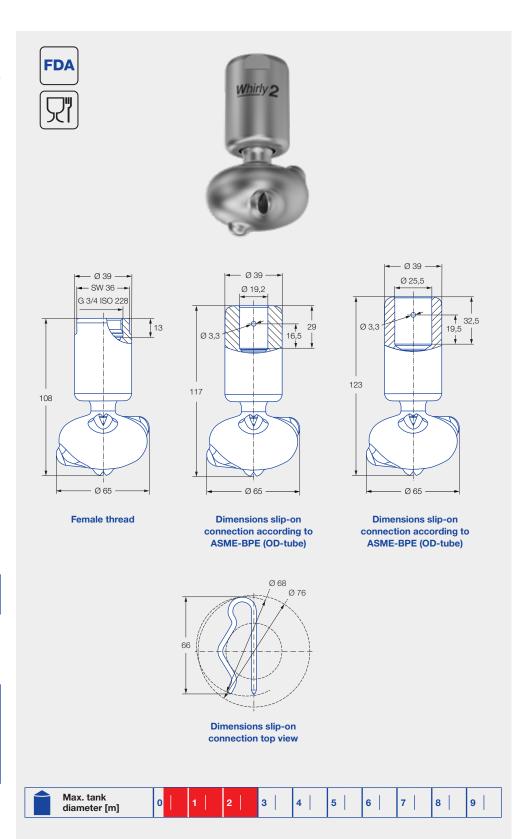
#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of stainless steel

#### Adapter:


3/4 BSPP is compatible with HygienicFit





#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/medialibrary



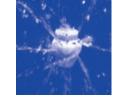
# Rotating cleaning nozzle **»Whirly 2« Series 5W9**



| Spray | 0          | rdering no. |                       |                       | Narrowest free cross |     | V wate | er [l/min]                |                           | Max. tank       |
|-------|------------|-------------|-----------------------|-----------------------|----------------------|-----|--------|---------------------------|---------------------------|-----------------|
| angle | Туре       |             | Code 1"               |                       |                      |     |        | o <sub>max</sub> = 6 bar) |                           | diameter<br>[m] |
|       |            | 3/4 BSPP    | Slip-on<br>connection | Slip-on<br>connection | [mm]                 | 1.0 | 2.0    | 3.0                       | at 40 psi<br>[US gal/min] |                 |
| 270°  | 5W9.075.1Y | AL          | TF07                  | TF10                  | 2.0                  | 34  | 48     | 59                        | 15                        | 1.8             |
|       | 5W9.145.1Y | AL          | TF07                  | TF10                  | 2.8                  | 50  | 71     | 87                        | 22                        | 2.1             |
|       | 5W9.195.1Y | AL          | TF07                  | TF10                  | 3.3                  | 69  | 97     | 119                       | 30                        | 2.6             |
| 270°  | 5W9.076.1Y | AL          | TF07                  | TF10                  | 2.0                  | 34  | 48     | 59                        | 15                        | 1.8             |
|       | 5W9.106.1Y | AL          | TF07                  | TF10                  | 2.5                  | 41  | 58     | 71                        | 18                        | 2.1             |
| ZALV  | 5W9.196.1Y | AL          | TF07                  | TF10                  | 3.4                  | 69  | 97     | 119                       | 30                        | 2.6             |
| 360°  | 5W9.079.1Y | AL          | TF07                  | TF10                  | 1.6                  | 34  | 48     | 59                        | 15                        | 1.8             |
|       | 5W9.149.1Y | AL          | TF07                  | TF10                  | 2.4                  | 50  | 71     | 87                        | 22                        | 2.1             |
| V/IIV | 5W9.199.1Y | AL          | TF07                  | TF10                  | 3.0                  | 69  | 97     | 119                       | 30                        | 2.6             |
|       | 5W9.279.1Y | AL          | TF07                  | TF10                  | 3.5                  | 103 | 145    | 178                       | 45                        | 3.0             |

NPT thread available on request.

The maximum tank diameter applies to the recommended operating pressure and is meant as a recommendation only. The cleaning result is also affected by the type of soiling.


Compressed air should be used for dry blowing for a short time only. Operation above the recommended operating pressure has a negative impact on the cleaning result and wear.

#### Slip-on information:

- Pin made of stainless steel 316L supplied (Ordering no.: 095.013.1Y.06.72.0).
- Depending on the diameter of the adapter, the flow rate can increase due to a leakage between the adapter and the rotating cleaning nozzle.
- Minimum insertion diameter (with mounted pin) is 68 mm.

Bestell- Type + Anschluss = Bestell-Nr. beispiel: 5W9.075.1Y + AL = 5W9.075.1Y.AL

### Rotating cleaning nozzle »PTFE Whirly« **Series 573/583**



- Self rotating
- Rotating solid jets
- Recommended for tanks made of glass and enamel
- 3A® version available

#### **Materials:**

**PTFE** 

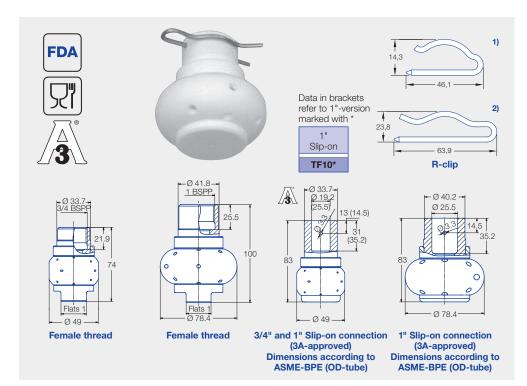
#### Max. temperature:

95 °C

#### Recommended operating pressure:

2 bar

#### Installation:


Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PTFE





#### **Function video**

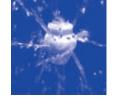
Scan the QR-code or go to: https://www.lechler.com/de-en/ medialibrary

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

#### Slip-on information:

- R-clip made of stainless steel 316L SS is included (Ordering number:
- R-clip 1: 095.022.1Y.50.88.E, R-clip 2: 095.022.1Y.50.60.E). Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

| Spray<br>angle |        |            | Orderir     | ng no.    |                     |               | E<br>Ø |     | Ý                 | [l/min] |                                | , E                       |
|----------------|--------|------------|-------------|-----------|---------------------|---------------|--------|-----|-------------------|---------|--------------------------------|---------------------------|
|                |        |            |             | Conn      | ection              |               | [mm]   |     | <b>p</b> [bar] (p | max = 6 | bar)                           | Max. tank<br>iameter [rr  |
|                | R-clip | Туре       | 3/4<br>BSPP | 1<br>BSPP | 3/4"<br>Slip-<br>on | 1"<br>Slip-on |        | 1   | 2                 | 3       | at 40 psi<br>[US gal./<br>min] | Max. tank<br>diameter [m] |
| 180°           | 1)     | 583.114.55 | AL          | -         | TF07                | TF10*         | 2.1    | 47  | 67                | 82      | 21                             | 2.5                       |
|                | 1)     | 583.264.55 | AL          | -         | TF07                | TF10*         | 3.3    | 103 | 145               | 178     | 45                             | 2.8                       |
|                | 2)     | 583.344.55 | -           | AN        | -                   | TF10          | 7.1    | 159 | 225               | 276     | 70                             | 3.2                       |
| 180°           | 1)     | 573.114.55 | AL          | -         | TF07                | TF10*         | 2.1    | 47  | 67                | 82      | 21                             | 2.5                       |
|                | 1)     | 573.264.55 | AL          | -         | TF07                | TF10*         | 3.3    | 103 | 145               | 178     | 45                             | 2.8                       |
|                | 2)     | 573.344.55 | -           | AN        | -                   | TF10          | 7.1    | 159 | 225               | 276     | 70                             | 3.2                       |
| 270°           | 1)     | 583.116.55 | AL          | -         | TF07                | TF10*         | 2.4    | 47  | 67                | 82      | 21                             | 2.5                       |
|                | 1)     | 583.266.55 | AL          | -         | TF07                | TF10*         | 3.4    | 103 | 145               | 178     | 45                             | 2.8                       |
|                | 2)     | 583.346.55 | -           | AN        | -                   | TF10          | 5.9    | 159 | 225               | 276     | 70                             | 3.2                       |
| 270°           | 1)     | 573.116.55 | AL          | -         | TF07                | TF10*         | 2.4    | 47  | 67                | 82      | 21                             | 2.5                       |
|                | 1)     | 573.266.55 | AL          | -         | TF07                | TF10*         | 3.4    | 103 | 145               | 178     | 45                             | 2.8                       |
|                | 2)     | 573.346.55 | -           | AN        | -                   | TF10          | 5.9    | 159 | 225               | 276     | 70                             | 3.2                       |
| 360°           | 1)     | 583.119.55 | AL          | -         | TF07                | TF10*         | 1.8    | 41  | 58                | 71      | 18                             | 2.4                       |
|                | 1)     | 583.209.55 | AL          | -         | TF07                | TF10*         | 3.5    | 71  | 100               | 122     | 31                             | 2.5                       |
|                | 1)     | 583.269.55 | AL          | -         | TF07                | TF10*         | 4.8    | 103 | 145               | 178     | 45                             | 2.8                       |
|                | 2)     | 583.279.55 | -           | AN        | -                   | TF10          | 3.7    | 106 | 150               | 184     | 47                             | 3.0                       |
|                | 2)     | 583.349.55 | -           | AN        | -                   | TF10          | 5.6    | 159 | 225               | 276     | 70                             | 3.2                       |


E = narrowest free cross-section · NPT on request

see drawing 3 for details

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

| Example      | Туре        | + | Connection | = | Ordering no.  |
|--------------|-------------|---|------------|---|---------------|
| of ordering: | 583.114.55. | + | AL         | = | 583.114.55.AL |

## Rotating cleaning nozzle »PTFE Whirly« Series 599



- PTFE whirling nozzle for high temperature applications
- Balanced rotating action
- Gap-free all-around cleaning
- Free spinning, self-lubricating and self-flushing
- All used materials are FDA conform

#### Applications:

For rinsing of small and medium-sized vessels and reactors in higher temperature processing environments.

#### Max. tank diameter:

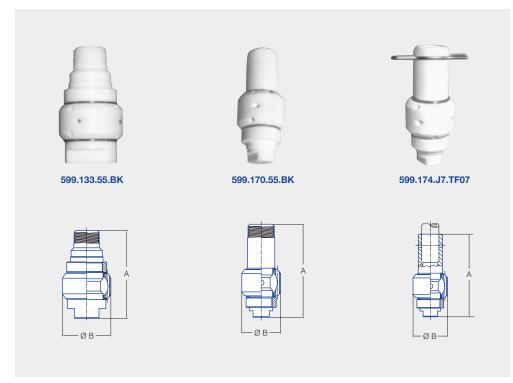
Rinsing: 5.0 m Cleaning: 3.0 m

### Recommended operating pressure:

1.0-2.0 bar, max. 6.0 bar

#### Installation:

Operation in every direction is possible


#### Max. temperature:

130 °C

#### Materials:

PTFE

Rings: Alloy 22



| Spray angle | Ordering   | g no.    |           |              | <b>V</b> [1/ | min] | A<br>Length | B<br>Ø | Weight |     |
|-------------|------------|----------|-----------|--------------|--------------|------|-------------|--------|--------|-----|
|             |            | Conn     | ection    |              | - [,/        |      | [mm]        | [mm]   | [g]    |     |
|             | Туре       | - NPT    | slip-on   |              | <b>p</b> [l  | oar] |             |        |        |     |
|             |            | 3/4 male | 3/4" slip | 1            | 2            | 3    |             |        |        |     |
| 360°        | 599.133.55 | ВК       | -         | 71           | 100          | 122  | 31          | 89     | 51     | 160 |
|             | 599.170.55 | BK       | -         | 61 84 103 26 |              |      |             | 91     | 38     | 115 |
|             | 599.174.J7 | -        | TF07      | 61           | 84           | 103  | 26          | 91     | 38     | 115 |

#### Please note:

Higher pressure generally means higher wear and smaller droplets. This might have adverse effects on the cleaning result. We do not recommend the operation with compressed air.

| Example      | Туре        | + | Connection = | Ordering no.  |
|--------------|-------------|---|--------------|---------------|
| of ordering: | 599.133.55. | + | BK =         | 599.133.55.BK |

### Rotating cleaning nozzle »XactClean® HP« **Series 5S2/5S3**



- Controlled rotation
- Powerful flat jet nozzles
- Very efficient tank cleaning nozzle

#### Materials:

316L SS, 316 SS, 632 SS, PEEK, PTFE, Zirconium oxide, EPDM

#### Max. temperature: 95 °C

Recommended

## operating pressure:

5 bar

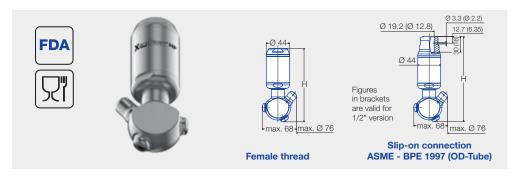
#### Installation:

Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:


Double ball bearing

#### **Rotation monitoring** sensor:



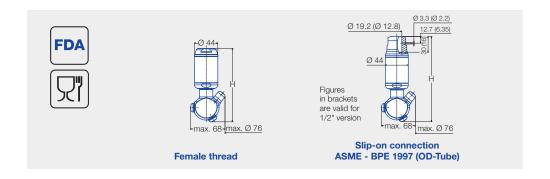
Sensor compatible, please ask for more information.





#### Nozzle dimensions [mm]

| Connection | Max. Height H [mm] |
|------------|--------------------|
| AF         | 146                |
| AH         | 149                |
| AL         | 139                |
| AN         | 139                |
| TF05       | 148                |
| TF07       | 164                |


| Spray angle |            |                       | Order                 | ing no.               |                     | E<br>Ø          | - I VIVIIIII    |      |            |         | ¥ <u>E</u> |                                |                           |
|-------------|------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------|-----------------|------|------------|---------|------------|--------------------------------|---------------------------|
|             |            |                       |                       | Conn                  | ection              |                 |                 | [mm] | <b>p</b> [ | bar] (p | max =      | 15 bar)                        | tank<br>ter [r            |
|             | Туре       | 3/8<br>BSPP<br>female | 1/2<br>BSPP<br>female | 3/4<br>BSPP<br>female | 1<br>BSPP<br>female | 1/2"<br>Slip-on | 3/4"<br>Slip-on |      | 2          | 5       | 10         | at 40 psi<br>[US gal./<br>min] | Max. tank<br>diameter [m] |
| 180°        | 5S2.953.1Y | AF                    | AH                    | -                     | -                   | TF05            | -               | 1.7  | 25         | 40      | 57         | 7.8                            | 3.5                       |
|             | 5S3.053.1Y | -                     | AH                    | -                     | -                   | -               | TF07            | 2.0  | 41         | 65      | 92         | 12.8                           | 4.0                       |
|             | 5S3.113.1Y | -                     | AH                    | AL                    | -                   | -               | TF07            | 2.0  | 60         | 94      | 133        | 18.4                           | 6.0                       |
|             | 5S3.183.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0  | 89         | 141     | 199        | 27.7                           | 7.0                       |
|             | 5S3.233.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0  | 111        | 175     | 248        | 34.3                           | 7.5                       |
|             | 5S3.263.1Y | -                     | -                     | AL                    | AN                  | -               | TF07            | 2.0  | 135        | 213     | 301        | 41.8                           | 8.0                       |
| 180°        | 5S2.954.1Y | AF                    | AH                    | -                     | -                   | TF05            | -               | 1.7  | 25         | 40      | 57         | 7.8                            | 3.5                       |
|             | 5S3.054.1Y | -                     | AH                    | -                     | -                   | -               | TF07            | 2.0  | 41         | 65      | 92         | 12.8                           | 4.0                       |
|             | 5S3.114.1Y | -                     | AH                    | AL                    | -                   | -               | TF07            | 2.0  | 60         | 94      | 133        | 18.4                           | 6.0                       |
|             | 5S3.184.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0  | 89         | 141     | 199        | 27.7                           | 7.0                       |
|             | 5S3.234.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0  | 111        | 175     | 248        | 34.3                           | 7.5                       |
|             | 5S3.264.1Y | -                     | -                     | AL                    | AN                  | -               | TF07            | 2.0  | 135        | 213     | 301        | 41.8                           | 8.0                       |

E = narrowest free cross-section · NPT on request

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

# Rotating cleaning nozzle »XactClean® HP« Series 5S2/5S3





| Spray<br>angle |            |                       | Order                 | ing no.               |                     |                 |                 | E<br>Ø |     | Ÿ       | [l/min] |                                | , F                       |
|----------------|------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------|-----------------|--------|-----|---------|---------|--------------------------------|---------------------------|
|                |            |                       |                       | Conn                  | ection              |                 |                 | [mm]   | р[  | bar] (p | max =   | 15 bar)                        | Max. tank<br>ameter [n    |
|                | Туре       | 3/8<br>BSPP<br>female | 1/2<br>BSPP<br>female | 3/4<br>BSPP<br>female | 1<br>BSPP<br>female | 1/2"<br>Slip-on | 3/4"<br>Slip-on |        | 2   | 5       | 10      | at 40 psi<br>[US gal./<br>min] | Max. tank<br>diameter [m] |
| 270°           | 5S2.955.1Y | AF                    | AH                    | -                     | -                   | TF05            | -               | 1.7    | 25  | 40      | 57      | 7.8                            | 3.5                       |
| atha           | 5S3.055.1Y | -                     | AH                    | -                     | -                   | -               | TF07            | 2.0    | 41  | 65      | 92      | 12.8                           | 4.0                       |
|                | 5S3.115.1Y | -                     | AH                    | AL                    | -                   | -               | TF07            | 2.0    | 60  | 94      | 133     | 18.4                           | 6.0                       |
|                | 5S3.185.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 89  | 141     | 199     | 27.7                           | 7.0                       |
|                | 5S3.235.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 111 | 175     | 248     | 34.3                           | 7.5                       |
|                | 5S3.265.1Y | -                     | -                     | AL                    | AN                  | -               | TF07            | 2.0    | 135 | 213     | 301     | 41.8                           | 8.0                       |
| 270°           | 5S2.956.1Y | AF                    | AH                    | -                     | -                   | TF05            | -               | 1.7    | 25  | 40      | 57      | 7.8                            | 3.5                       |
|                | 5S3.056.1Y | -                     | AH                    | -                     | -                   | -               | TF07            | 2.0    | 41  | 65      | 92      | 12.8                           | 4.0                       |
|                | 5S3.116.1Y | -                     | AH                    | AL                    | -                   | -               | TF07            | 2.0    | 60  | 94      | 133     | 18.4                           | 6.0                       |
| [2/]\\]        | 5S3.186.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 89  | 141     | 199     | 27.7                           | 7.0                       |
|                | 5S3.236.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 111 | 175     | 248     | 34.3                           | 7.5                       |
|                | 5S3.266.1Y | -                     | -                     | AL                    | AN                  | -               | TF07            | 2.0    | 135 | 213     | 301     | 41.8                           | 8.0                       |
| 360°           | 5S2.959.1Y | AF                    | AH                    | -                     | -                   | TF05            | -               | 1.5    | 25  | 40      | 57      | 7.8                            | 3.5                       |
|                | 5S3.059.1Y | -                     | AH                    | -                     | -                   | -               | TF07            | 2.0    | 41  | 65      | 92      | 12.8                           | 4.0                       |
|                | 5S3.119.1Y | -                     | AH                    | AL                    | -                   | -               | TF07            | 2.0    | 60  | 94      | 133     | 18.4                           | 6.0                       |
|                | 5S3.189.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 89  | 141     | 199     | 27.7                           | 7.0                       |
|                | 5S3.239.1Y | -                     | -                     | AL                    | -                   | -               | TF07            | 2.0    | 111 | 175     | 248     | 34.3                           | 7.5                       |
|                | 5S3.269.1Y | -                     | -                     | AL                    | AN                  | -               | TF07            | 2.0    | 135 | 213     | 301     | 41.8                           | 8.0                       |

 $\mathsf{E} = \mathsf{narrowest} \; \mathsf{free} \; \mathsf{cross\text{-}section} \cdot \mathsf{NPT} \; \mathsf{on} \; \mathsf{request}$ 

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure meanshigher wear and smaller droplets. This might have adverse effects on the cleaning result.

#### Slip-on information:

- R-clip made of stainless steel
- 316L SS is included (Ordering number: 095.022.1Y.50.60.E (TF07), 095.013.1E.05.59.0 (TF05)).
- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

## \*

## Rotating cleaning nozzle »XactClean® HP+« Series 5S5



- Controlled rotation
- Powerful flat fan nozzles
- Very efficient tank cleaning nozzle, especially for larger tanks

#### Materials:

316L SS, 316 SS, PEEK, EPDM

#### Max. temperature:

95 °C

## Recommended operating pressure:

3 bar

#### Installation:

Operation in every direction is possible

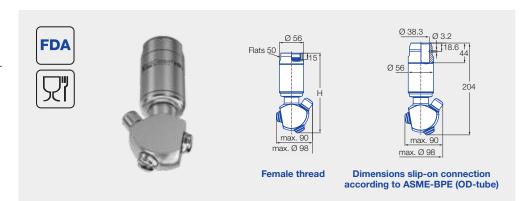
#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Double ball bearing




Rotation monitoring sensor Sensor compatible, please ask for more

information.



#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/medialibrary



#### Nozzle dimensions [mm]

| Connection | Max. Height [H] |  |  |  |  |
|------------|-----------------|--|--|--|--|
|            |                 |  |  |  |  |
| AN         | 185             |  |  |  |  |
| AQ         | 185             |  |  |  |  |
| AS         | 187             |  |  |  |  |

| Spray angle |            | Order     | ing no.       |               |                       | E<br>Ø |     |                | <b>V</b> [l/mir | n]                          | . 7                       |
|-------------|------------|-----------|---------------|---------------|-----------------------|--------|-----|----------------|-----------------|-----------------------------|---------------------------|
|             |            |           | Conn          | ection        |                       | [mm]   |     | tank<br>ter [n |                 |                             |                           |
|             | Туре       | 1<br>BSPP | 1 1/4<br>BSPP | 1 1/2<br>BSPP | 1 1/2"<br>Slip-<br>on |        | 2   | 3              | 5               | at 40 psi<br>[US gal./ min] | Max. tank<br>diameter [m] |
| 180°        | 5S5.293.1Y | AN        | -             | -             | TF15                  | 3.0    | 165 | 202            | 261             | 51.2                        | 9.0                       |
|             | 5S5.323.1Y | AN        | AQ            | -             | TF15                  | 3.0    | 200 | 245            | 316             | 62.0                        | 9.2                       |
|             | 5S5.363.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 250 | 306            | 395             | 77.6                        | 9.4                       |
| 180°        | 5S5.294.1Y | AN        | -             | -             | TF15                  | 3.0    | 165 | 202            | 261             | 51.2                        | 9.0                       |
|             | 5S5.324.1Y | AN        | AQ            | -             | TF15                  | 3.0    | 200 | 245            | 316             | 62.0                        | 9.2                       |
|             | 5S5.364.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 250 | 306            | 395             | 77.6                        | 9.4                       |
| 270°        | 5S5.295.1Y | AN        | -             | -             | TF15                  | 3.0    | 165 | 202            | 261             | 51.2                        | 9.0                       |
|             | 5S5.325.1Y | AN        | AQ            | -             | TF15                  | 3.0    | 200 | 245            | 316             | 62.0                        | 9.2                       |
|             | 5S5.365.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 250 | 306            | 395             | 77.6                        | 9.4                       |
| 270°        | 5S5.296.1Y | AN        | -             | -             | TF15                  | 3.0    | 165 | 202            | 261             | 51.2                        | 9.0                       |
|             | 5S5.326.1Y | AN        | AQ            | -             | TF15                  | 3.0    | 200 | 245            | 316             | 62.0                        | 9.2                       |
|             | 5S5.366.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 250 | 306            | 395             | 77.6                        | 9.4                       |
| 360°        | 5S5.299.1Y | AN        | -             | -             | TF15                  | 3.0    | 165 | 202            | 261             | 51.2                        | 9.0                       |
|             | 5S5.329.1Y | AN        | AQ            | -             | TF15                  | 3.0    | 200 | 245            | 316             | 62.0                        | 9.2                       |
|             | 5S5.369.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 250 | 306            | 395             | 77.6                        | 9.4                       |
|             | 5S5.399.1Y | -         | AQ            | AS            | TF15                  | 3.0    | 300 | 367            | 474             | 93.1                        | 9.6                       |

 $\mathsf{E} = \mathsf{narrowest} \; \mathsf{free} \; \mathsf{cross\text{-}section} \cdot \mathsf{NPT} \; \mathsf{on} \; \mathsf{request}$ 

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure meanshigher wear and smaller droplets. This might have adverse effects on the cleaning result.

#### Slip-on information:

- R-clip made of stainless steel
- 316L SS is included (Ordering number: 095.013.1Y.06.45.0).
- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

## Rotating cleaning nozzle »Gyro« Series 577



- Self rotating
- Effective flat jet nozzles
- Large free cross sections, less prone to clogging

### Max. tank diameter:

5.5 m

#### Materials:

316L SS, PTFE

### Max. temperature: 90 $^{\circ}\text{C}$

Recommended

**operating pressure:** 3 bar

#### Installation:

Vertically facing downward

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PTFE

#### Accessories:

Spare parts set consisting of: top seal, bottom seal, bolt, nut, sleeve, instructions for



#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/medialibrary



| Spray angle | Or         | dering no. |        |     |             | <b>V</b> [l/mir       | 1]       |                                | Dime                | nsions                |
|-------------|------------|------------|--------|-----|-------------|-----------------------|----------|--------------------------------|---------------------|-----------------------|
|             |            | Conn       | ection |     | <b>p</b> [b | ar] (p <sub>max</sub> | = 5 bar) |                                |                     |                       |
|             | Туре       | 1 BSPP     | 2 BSPP | 1   | 2           | 3                     | 5        | at 40 psi<br>[US gal./<br>min] | Height<br>H<br>[mm] | Diameter<br>D<br>[mm] |
| 180°        | 577.283.1Y | AN         | -      | 115 | 163         | 200                   | 258      | 50                             | 72                  | 118                   |
|             | 577.363.1Y | AN         | -      | 182 | 258         | 316                   | 408      | 80                             | 72                  | 118                   |
|             | 577.403.1Y | -          | AW     | 228 | 322         | 394                   | 509      | 100                            | 103                 | 156                   |
|             | 577.433.1Y | -          | AW     | 273 | 386         | 473                   | 610      | 120                            | 103                 | 156                   |
|             | 577.523.1Y | -          | AW     | 452 | 639         | 783                   | 1010     | 170                            | 103                 | 156                   |
| 180°        | 577.284.1Y | AN         | -      | 115 | 163         | 200                   | 258      | 50                             | 72                  | 118                   |
|             | 577.364.1Y | AN         | -      | 182 | 258         | 316                   | 408      | 80                             | 72                  | 118                   |
|             | 577.404.1Y | -          | AW     | 228 | 322         | 394                   | 509      | 100                            | 103                 | 156                   |
|             | 577.434.1Y | -          | AW     | 273 | 386         | 473                   | 610      | 120                            | 103                 | 156                   |
|             | 577.494.1Y | -          | AW     | 380 | 538         | 659                   | 851      | 170                            | 103                 | 156                   |
| 270°        | 577.285.1Y | AN         | -      | 115 | 163         | 200                   | 258      | 50                             | 72                  | 118                   |
|             | 577.365.1Y | AN         | -      | 182 | 258         | 316                   | 408      | 80                             | 72                  | 118                   |
|             | 577.405.1Y | -          | AW     | 228 | 322         | 394                   | 509      | 100                            | 103                 | 156                   |
|             | 577.435.1Y | -          | AW     | 273 | 386         | 473                   | 610      | 120                            | 103                 | 156                   |
|             | 577.495.1Y | -          | AW     | 380 | 538         | 659                   | 851      | 170                            | 103                 | 156                   |
| 360°        | 577.289.1Y | AN         | -      | 115 | 163         | 200                   | 258      | 50                             | 72                  | 118                   |
|             | 577.369.1Y | AN         | -      | 182 | 258         | 316                   | 408      | 80                             | 72                  | 118                   |
|             | 577.409.1Y | -          | AW     | 228 | 322         | 394                   | 509      | 100                            | 103                 | 156                   |
|             | 577.439.1Y | -          | AW     | 273 | 386         | 473                   | 610      | 120                            | 103                 | 156                   |
|             | 577.499.1Y | -          | AW     | 380 | 538         | 659                   | 851      | 170                            | 103                 | 156                   |

NPT on request

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Example Type + Connection = Ordering no. for Ordering: 577.283.1Y. + AN = 577.283.1Y.AN

## High impact tank cleaning machine

### »IntenseClean Hygienic« Series 5TA/5TB



- Gear-controlled
- Particularly powerful solid jets
- Operating pressures up to 15 and 25 bar possible

#### Materials:

316L SS, 632 SS, PEEK. PTFE. Zirconium oxide, EPDM

#### Max. temperature: 95 °C

Recommended

#### operating pressure: 5 bar

#### Installation:

Operation in every direction possible

#### Filtration:

Line strainer with a mesh size of 0.2 mm/80 mesh

#### Bearing:

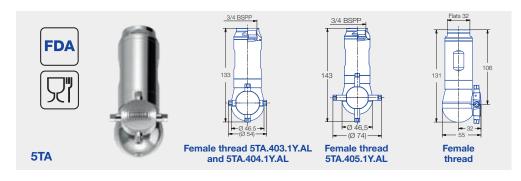
Ball bearing

#### Weight:

5TA: 0.9 kg 5TB: 4.0 kg

#### **Rotation monitoring** sensor:

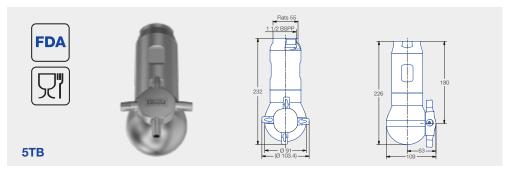



Sensor compatible, please ask for more information.





#### **Function video**


Scan the QR-code or go to: https://www.lechler.com/de-en/ medialibrary



| Spray<br>angle | Ordering no.<br>Type | E<br>Ø<br>[mm] | Number.<br>Ø Nozzles<br>[mm] |    | <b>V</b> [l/min] <b>p</b> [bar] (p <sub>max</sub> = 15 bar) |     |                             |                     |  |  |  |
|----------------|----------------------|----------------|------------------------------|----|-------------------------------------------------------------|-----|-----------------------------|---------------------|--|--|--|
|                |                      |                |                              | 2  | 5                                                           | 10  | at 40 psi<br>[US gal./ min] | Max. ta<br>diameter |  |  |  |
| 360°           | 5TA.403.1Y.AL        | 1.5            | 4 x 3.0                      | 24 | 39                                                          | 55  | 7.7                         | 12.0                |  |  |  |
|                | 5TA.404.1Y.AL        | 1.5            | 4 x 4.0                      | 35 | 56                                                          | 79  | 11.0                        | 12.5                |  |  |  |
|                | 5TA.405.1Y.AL        | 1.5            | 4 x 5.0                      | 50 | 79                                                          | 111 | 15.5                        | 13.0                |  |  |  |

E = Narrowest free cross-section · Slip-on connection on request

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.



| Spray<br>angle | Ordering no.<br>Type | E<br>Ø<br>[mm] | Number,<br>Ø Nozzles<br>[mm] |     | tank<br>ter [m] |                        |                             |               |
|----------------|----------------------|----------------|------------------------------|-----|-----------------|------------------------|-----------------------------|---------------|
|                |                      |                | []                           | 2   | 5               | (p <sub>max</sub> = 25 | at 40 psi<br>[US gal./ min] | Max.<br>diame |
| 360°           | 5TB.406.1Y.AS        | 6.0            | 4 x 6.0                      | 107 | 169             | 239                    | 33.1                        | 14.0          |
|                | 5TB.407.1Y.AS        | 6.0            | 4 x 7.0                      | 132 | 209             | 296                    | 41.0                        | 14.0          |
|                | 5TB.408.1Y.AS        | 6.0            | 4 x 8.0                      | 150 | 238             | 336                    | 46.7                        | 15.0          |

E = narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

# High impact tank cleaning machine »IntenseClean« Series 5TM



- Gear driven
- Very powerful solid jets
- Popular and proven design

#### Materials:

316L SS, 304 SS, PTFE, PEEK

#### Max. temperature:

95 °C

### Recommended operating pressure:

5 bar

#### Installation:

Operation in every direction possible

#### Filtration:

Line strainer with a mesh size of 0.2 mm/80 mesh

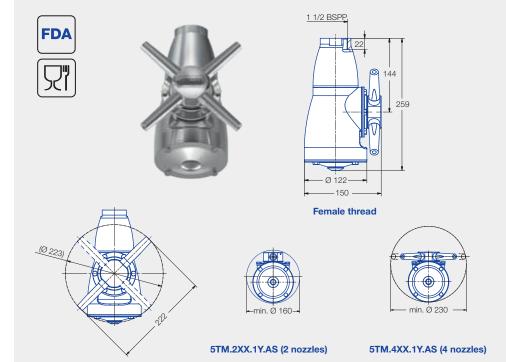
#### Bearing:

Ball bearing

#### Weight:

7.5 kg

#### **Rotation monitoring**




sensor: Sensor compatible, please ask for more information.



#### **Function video**

Scan the QR-code or go to: https://www.lechler.com/de-en/medialibrary



| Spray angle | Ordering no.  | E<br>Ø<br>[mm] | Number,<br>Ø Nozzles<br>[mm] |     | Max. tank<br>diameter [m] |     |                             |               |
|-------------|---------------|----------------|------------------------------|-----|---------------------------|-----|-----------------------------|---------------|
|             |               |                |                              | 2   | 3                         | 5   | at 40 psi<br>[US gal./ min] | Max.<br>diame |
| 360°        | 5TM.208.1Y.AS | 8              | 2 x 8.0                      | 125 | 153                       | 198 | 39                          | 24.0          |
|             | 5TM.210.1Y.AS | 10             | 2 x 10.0                     | 160 | 196                       | 253 | 50                          | 24.0          |
|             | 5TM.406.1Y.AS | 6              | 4 x 6.0                      | 140 | 171                       | 221 | 43                          | 18.0          |
|             | 5TM.407.1Y.AS | 7              | 4 x 7.0                      | 170 | 208                       | 269 | 53                          | 20.0          |
|             | 5TM.408.1Y.AS | 8              | 4 x 8.0                      | 200 | 245                       | 316 | 62                          | 22.0          |
|             | 5TM.410.1Y.AS | 10             | 4 x 10.0                     | 260 | 318                       | 411 | 81                          | 23.0          |

E = narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

### **QUALITY WITH A SYSTEM**

Lechler products are used in a wide variety of sectors and applications. Which is why the products' requirements are often very specific to certain applications. We define the term "quality" as the extent to which our products fulfill our customer's individual requirements.

In order to do this we have been certified to internationally renowned certificates.

### **Certifications and Quality**

- ISO 9001-2008 Certification
- DIN EN 10204 Inspection Certificate
- Classification according to Pressure Equipment Directive 2014/68/EU
- Declaration of Incorporation of partly completed machinery according to 2006/42/EC
- Declaration of Conformity of machinery according to 2006/42/EC
- ASME qualified welding procedure specifications
- Welding procedure specification DIN EN ISO 15609

### **Code Compliance**

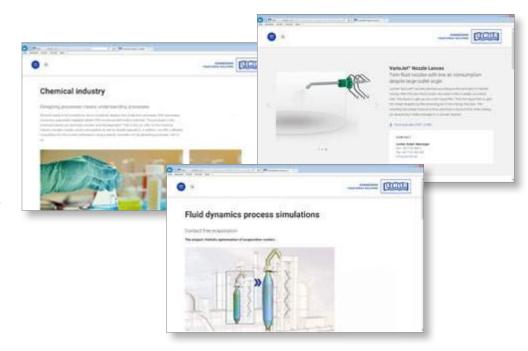
- ASME B31.1 Power Piping Code
- Metallic industrial piping: DIN EN 13480
- Unfired pressure vessels: DIN EN 13445
- ASME B31.3 Process Piping Code
- Welder Performance Qualification Records per ASME BPVC Section IX
- Qualification test of welders: DIN EN 287

### **Testing**

- ANSI and ASTM testing
- Non-destructive testing Penetrant testing: DIN EN ISO 3452
- Hardness
- Hydrostatic pressure test:
  Pressure Equipment Directive 2014/68/EU,
  DIN EN 13480-5 and DIN EN 13445-5
- Spray and flow testing
- Phase Doppler Anemometry (PDA) measurement system
- Magnetic particle inspection : DIN EN ISO 17638
- Positive Material Identification



#### Talk to us


Your requirements are the first step towards a solution. We are more than happy to help you solve your individual tasks. Tell us your objectives and we will take care of the solution. If the solution is not yet available, we will tailormake one for you. That is our promise.

## FULL INFORMATION IS JUST A CLICK AWAY: THE LECHLER WEBSITE



On the internet you can also find additional information about our entire range of products, work aids, our global presence and much more besides – we are looking forward to your visit.

www.lechler.com



### 3D DESIGN DATA FOR YOUR WORK




3D design data for Lechler nozzles and accessories is now available to you free of charge for your design work.

http://lechler.partcommunity.com

Your advantages:

- Time-saving, direct download of design drawings and technical data
- Simple, fast product selection
- Preview function with product photo and 3D graphics
- Available in all common 3D file formats
- Free use after one-time registration



### **LECHLER INDUSTRY APP**



Android (Google)



iOS (Apple)



All important calculation and conversion programs for nozzle technology combined in one App.

- Unit converter for pressure, volume and flow rate
- Pressure/flow rate calculator for single-fluid nozzles incl. axial-flow full cone nozzles
- Calculation of pipe diameters

## ENGINEERING YOUR SPRAY SOLUTION



## Lechler GmbH · Precision Nozzles · Nozzle Systems Ulmer Strasse 128 · 72555 Metzingen, Germany · Phone +49 7123 962-0 · info@lechler.de · www.lechler.com

**ASEAN:** Lechler Spray Technology Sdn. Bhd. • 22, Jln. Astaka 4B/KU2 • Bdr. Bukit Raja • 41050 Klang • Malaysia • Phone +603 3359 1118 • info@lechler.com.my **Belgium:** Lechler S.A./N.V. • Avenue Newton 4 • 1300 Wavre • Phone +32 10 225022 • info@lechler.be

China: Lechler Nozzle Systems (Changzhou) Co., Ltd. • No.99 Decheng Rd, Jintan, Changzhou, JS 213200, P.R.C • Phone +86 519-6822 8088 • info@lechler.com.cn Finland: Lechler Oy • Ansatie 6 a C 3 krs • 01740 Vantaa • Phone +358 207 856880 • info@lechler.fi

France: Lechler France SAS · Parc de la Haute Maison · 6, Allée Képler, Bâtiment C2 · 77420 Champs-sur-Marne · Phone +33 1 49882600 · info@lechler.fr Great Britain: Lechler Ltd. · 1 Fell Street, Newhall · Sheffield, S9 2TP · Phone +44 114 2492020 · info@lechler.com

India: Lechler (India) Pvt. Ltd. • Plot B-2 • Main Road • Wagle Industrial Estate Thane • 400604 Maharashtra • Phone +91 22 40634444 • lechler@lechlerindia.com Italy: Lechler Spray Technology S.r.I. • Via Don Dossetti, 2 • 20080 Carpiano (Mi) • Phone +39 2 98859027 • info@lechleritalia.com

 $\textbf{Russia:} \ \, \text{Lechler Rus} \cdot \text{OOO, 108811, Moscow, Settlement Moskowskiy, Kiewskoe Chaussee km 22} \cdot \text{Object 4, Bld. 2, Block G, Floor 6, Office 601/G} \cdot \text{info@lechler-rus.ru}$ 

 $\textbf{Spain:} \ \, \text{Lechler, S.A.} \cdot \text{C} \ / \ \, \text{Isla de Hierro, 7 - Oficina 1.3} \cdot 28703 \ \, \text{San Sebastián de los Reyes (Madrid)} \cdot \ \, \text{Phone } +34\ 91\ 6586346 \cdot \ \, \text{info@lechler.es}$ 

**Sweden:** Lechler AB · Hävertgatan 29 · 252 423 Helsingborg · Phone +46 18 167030 · info@lechler.se **USA:** Lechler Inc. · 445 Kautz Road · St. Charles, IL 60174 · Phone +1 630 3776611 · info@lechlerusa.com

