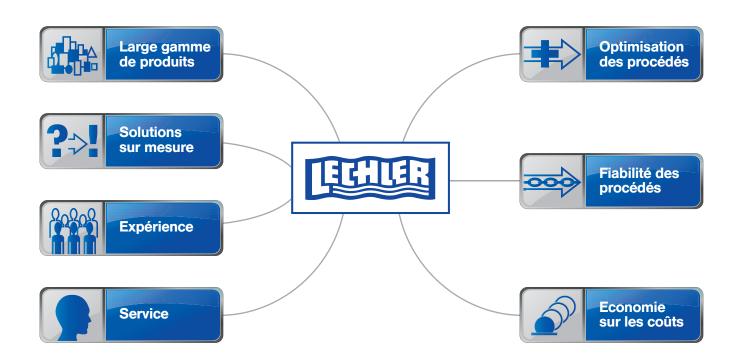


Buses de pulvérisation pour les industries agroalimentaires


LECHLER - VOTRE MEILLEUR PARTENAIRE POUR VOS APPLICATIONS DE PULVÉRISATION

Les industries agroalimentaires font face à des challenges d'envergure. Afin d'offrir aux consommateurs une gamme de produits toujours plus large, elles améliorent sans cesse leurs procédés de fabrication.

Par ailleurs, les règles d'hygiène de plus en plus strictes et la tendance à une plus grande rationalisation nécessitent des process efficaces et sûrs. Lechler développe et fabrique des buses pour de nombreuses applications et s'appuie pour cela sur l'expérience acquise au cours de ses 130 années d'existence. La somme des connaissances réunies par nos 670 spécialistes et une parfaite maîtrise des procédés industriels montrent que nous sommes depuis de nombreuses années à la pointe de l'innovation dans les systèmes de pulvérisation.

Aujourd'hui, Lechler fabrique des buses en Allemagne, en Angleterre, en Inde, en Chine et aux Etats Unis. Mais, à côté de cette ouverture internationale, nous restons une entreprise familiale du Bade-Wurtemberg avec cette véritable passion pour la précision, l'innovation et cette impulsion qui nous pousse à être toujours plus performant. D'autres filiales de distribution et plus de 40 agents à l'étranger complètent notre réseau de vente mondial.

UNE LARGE GAMME DE SERVICES POUR VOTRE RÉUSSITE

Buses pour les industries agroalimentaires

Nous avons compilé dans cette brochure les principales buses testées et approuvées pour les industries agroalimentaires.

Si vous ne trouvez pas une solution répondant à votre problème particulier, contacteznous. Nos ingénieurs application seront heureux de développer une buse aux caractéristiques optimales, correspondant à votre besoin.

Nous vous conseillerons avec nos solutions tout au long de la chaîne de production;

Désinfection et hygiène

Préparation des produits

Traitement des produits

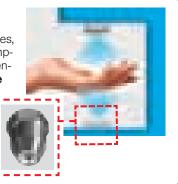
Remplissage et conditionnement

Grâce à notre connaissance détaillée des différentes étapes des procédés de fabrication, nous pouvons également vous donner un avis personnalisé et fournir des solutions sur mesure.

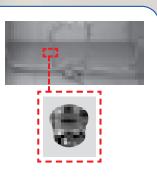
Vous trouverez plus d'information, d'idées et d'outils sur les buses et les techniques de pulvérisation sur notre site www.lechler.fr

Sommaire	Page
Applications	4
Désinfection et hygiène	5
Préparation des produits	6-7
Traitement des produits	8-9
Remplissage	
et conditionnement	10-11
Critères de sélection	12-17
Buses et accessoires	
Têtes de lavage	18-29
Atomiseurs	
pneumatiques	30-37
Buses à cône creux	38-40
Buses à cône plein	41-44
Buses à jet plat	45-59
Buses à jet rectiligne	60
Buses de soufflage	61-63
Accessoires	64-67
VarioSpray II	68
Autres buses	69-70
Service en ligne	71

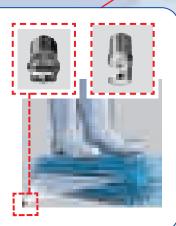
LES BUSES LECHLER SONT UTILISÉES POUR DE NOMBREUSES APPLICATIONS DANS LES INDUSTRIES AGROALIMENTAIRES



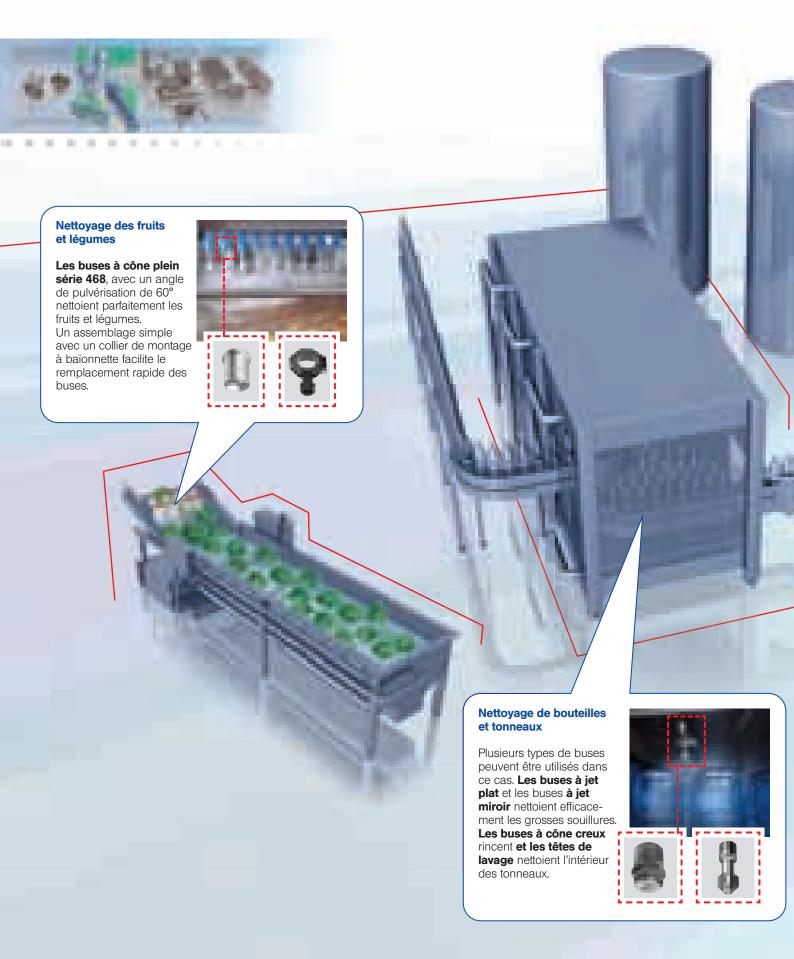
BUSES LECHLER POUR LES APPLICATIONS DE DÉSINFECTION ET D'HYGIÈNE

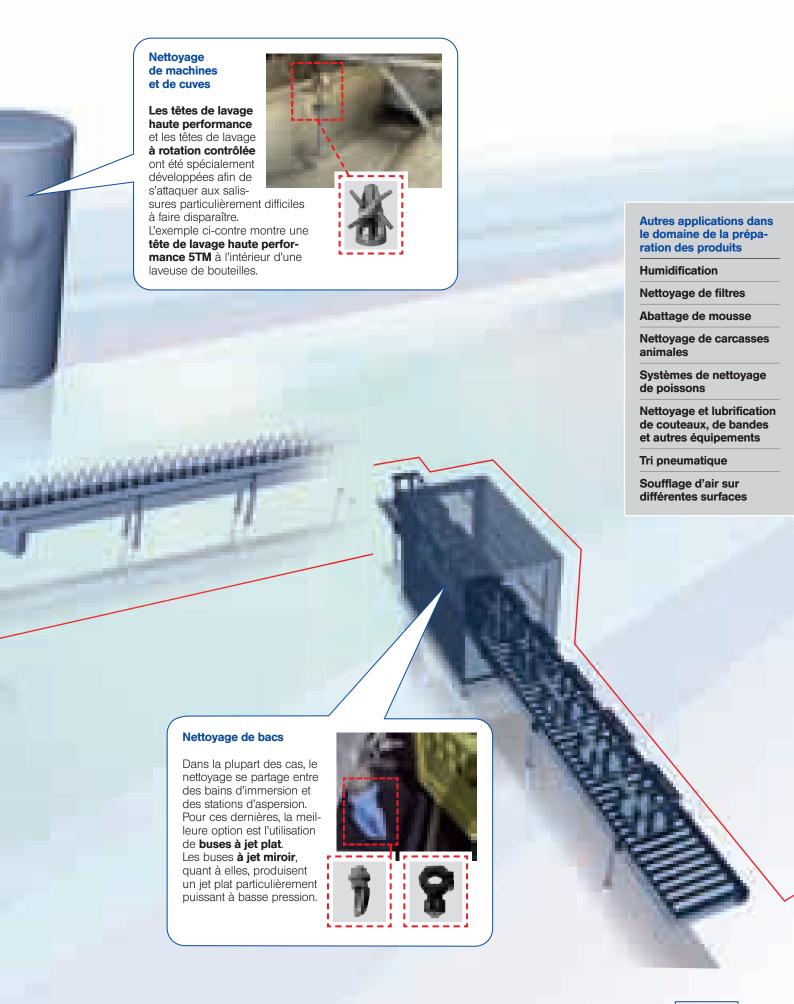

Désinfection des mains

Des sources d'eau propres, autant que possible exemptes de germes, sont essentielles. Les buses à cône creux atomisent les désinfectants très finement et assurent une large surface de couverture avec une grande efficacité de désinfection.

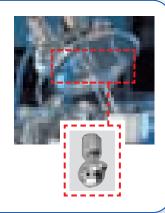

Désinfection des équipements de travail

De courtes durées de nettoyage sont demandées lorsqu'il faut nettoyer et désinfecter des chariots ou conteneurs de production. **Les buses à jet plat**, avec une force d'impact élevée, sont le bon choix pour cette application.


Nettoyage des semelles de bottes


Ces systèmes sont souvent couplés avec les ensembles de désinfection des mains. Pour nettoyer les brosses et pulvériser le liquide désinfectant, nous conseillons l'utilisation de buses à jet plat série 632 ou de buses à jet miroir série 686.

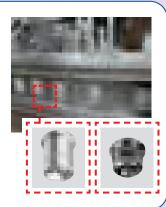
BUSES LECHLER POUR LES APPLICATIONS DE PRÉPARATION DES PRODUITS



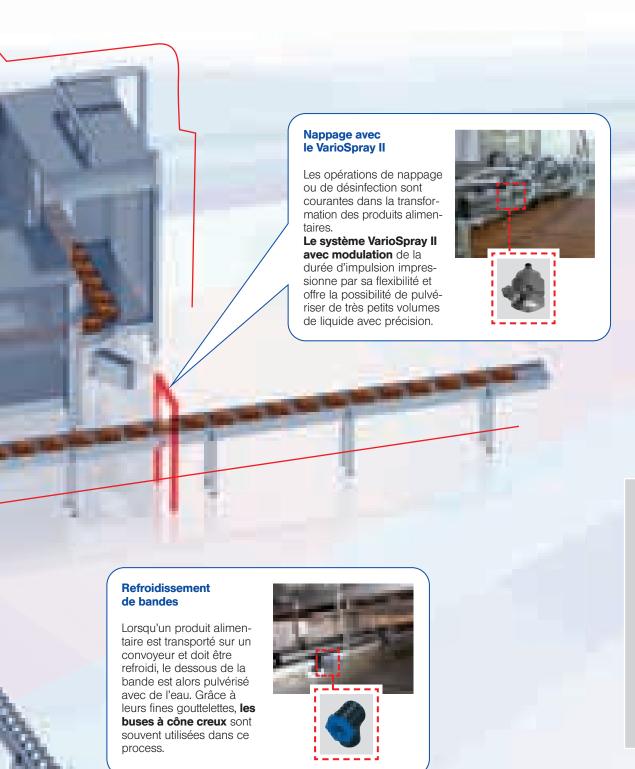
BUSES LECHLER POUR LES APPLICATIONS LIÉES AU TRAITEMENT DES PRODUITS


Nettoyage de cuves

Le nettoyage optimisé des cuves requiert une prise en considération complète de l'application en question. Lechler propose une large gamme de têtes de lavage rotatives et vous aide dans la recherche de la meilleure solution.


Refroidissement de saucisses

Dans l'industrie de la viande, les saucisses sont aspergées dans des cellules de refroidissement. Les buses à cône plein et les buses à jets multiples sont fréquemment utilisées pour cette application.



Nettoyage de boîtes de conserve métalliques et de canettes

Avant de les remplir de nourriture ou de liquide, les boîtes métalliques et canettes doivent être désinfectées extérieurement et intérieurement. Des buses à jet plat ou à cône plein peuvent être utilisées à cet effet.

Autres applications

Nettoyage de produits alimentaires

Dosage

Concentration

Dégazage de liquides

Pulvérisation d'agent de démoulage

Séchage par atomisation

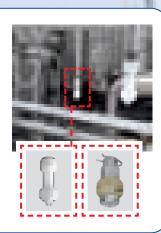
Blanchiment de légumes

Fabrication de sucre

Transformation du tabac

BUSES LECHLER POUR LE REMPLISSAGE ET LE CONDITIONNEMENT

Stérilisation



La désinfection est une étape majeure dans la production de produits alimentaires et de boissons. L'exemple ci-dessus montre un **atomiseur pneumatique série 136** utilisé pour désinfecter l'intérieur d'une bouteille plastique.

Nettoyage de machines de remplissage

Les machines de remplissage sont nettoyées régulièrement par un système fixe de buses de pulvérisation. Pour cette application, Lechler propose différentes **têtes de lavage** et **buses au design hygiénique** certifiées EHEDG et FDA.

Lubrification de bandes

Afin de réduire le coefficient de frottement des convoyeurs, il est d'usage de pulvériser des agents de lubrification. Les buses à jet plat série 652 xxx.8H.03 sont utilisées à cet effet.

Pasteurisation Une des étapes finales de la production est le chauffage à une température précise du produit dans un pasteurisateur. La chaleur est transférée par des buses à cône plein ou à cône creux qui appliquent un film d'eau très dense sur les parois du contenant. Buses de soufflage d'air Il existe de nombreuses applications dans lesquelles les buses de soufflage d'air Lechler, comme la série Whisperblast® par exemple, sont préférées pour leur faible niveau sonore face à des buses de soufflage standard. Dans l'exemple de droite, les buses Whisperblast® sont utilisées pour sécher le marquage afin qu'il ne coule pas.

.

Autres applications

Rinçage de bouteilles

Anti grippage

Refroidissement et humidification du pain

Application d'agent de démoulage

Séchage d'étiquettes et de bouteilles

Tri de canettes et de bouteilles

Tri par soufflage d'air

Refroidissement de bouteilles en plastique

CE QU'IL FAUT SAVOIR AVANT DE FAIRE UN CHOIX

① Les fondamentaux du nettoyage

Le cercle de Sinner

Réduction des coûts grâce à un système de nettoyage performant

② Le nettoyage mécanique avec les têtes de lavage Lechler

Les effets du nettoyage

Têtes de lavage rotatives ou fixes

3 Nettoyage chimique

Nettoyage avec des produits moussants

(4) Impact

Surface d'impact et forme du jet

Pression

Débit

- (5) Angle de pulvérisation et forme du jet
- **(6) Conception hygiénique** et état de surface
- 7 Répartition du jet
- **8 Taille de gouttelette**
- **9 Température**
- **10 Viscosité**
- 1) Plus petite section de passage
- **12** Raccordement
- **13 Matières et usure**

Figure 1 : Le cercle de Sinner avec les facteurs Température, Mécanique, Temps et Chimie en proportions égales.

1) Les fondamentaux du nettoyage

Le cercle de Sinner

Le cercle de Sinner illustre parfaitement les différents rôles joués par les quatre principaux facteurs garants d'un bon nettoyage :

- Chimie : choix du produit de nettoyage
- Mécanique : suppression des salissures par la pression ou le frottement
- Température : choix de la température de nettoyage
- Temps : détermination de la durée du nettoyage

La proportion de chaque facteur dans la totalité du process de nettoyage peut varier pour autant que la somme atteigne 100 %. Cela se traduit par un potentiel de gains significatifs. Par exemple, l'intensification des effets mécaniques permet de réduire la consommation en produits de nettoyage ou la durée du cycle de nettoyage. Le facteur mécanique occupe alors une plus grande part dans le cercle de Sinner et les autres facteurs peuvent être réduits.

Réduction des coûts grâce à un système de nettoyage efficace

C'est précisément là que nos buses et têtes de lavage rotatives entrent en jeu car elles sont spécialement développées pour délivrer une forte action mécanique de nettoyage. Leur plus grande efficacité permet de réduire en permanence les coûts énergétiques, les coûts des produits de nettoyage mais aussi de diminuer la durée du cycle de nettoyage. L'investissement dans une technologie de buses éprouvée est alors rentabilisé en peu de temps.

Figure 2 : Les buses et têtes de lavage rotatives Lechler produisent un effet mécanique plus puissant. Cela permet de réduire la part des autres facteurs ainsi que les coûts associés.

② Le nettoyage mécanique avec les têtes de lavage rotatives Lechler

Les effets du nettoyage

Les têtes de lavage rotatives produisent l'impact le plus puissant permettant de nettoyer les parois d'une cuve. Pour réaliser un nettoyage efficace, de grosses gouttelettes doivent frapper les parois à grande vitesse. Cela permet d'enlever les salissures qui ne peuvent être dissoutes dans le liquide de nettoyage.

Les facteurs ayant une influence significative sont la distance entre la buse et les parois ainsi que la pression de service. Elles ne doivent pas être trop grandes car le fluide se décomposera en petites gouttelettes (voir Fig 3 et 4) et l'impact sera moins fort. En plus de l'impact, le liquide s'écoulant le long des parois participe également au nettoyage. Si le film est suffisamment épais, les effets de frottement créés peuvent éliminer des salissures peu ou moyennement faciles à nettoyer. Dans ce cas, même les zones d'ombre seront lavées.

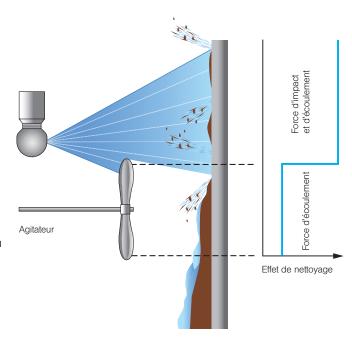


Figure 5 : Les mécanismes du nettoyage, la force de l'impact et de l'écoulement

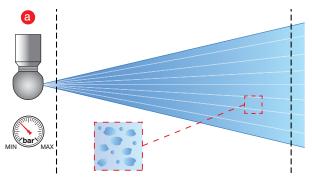


Figure 3 : Tête de lavage rotative fonctionnant à la pression recommandée

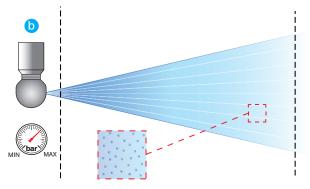
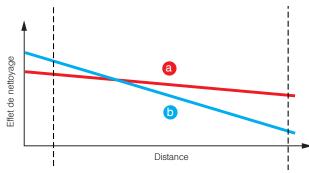



Figure 4 : Tête de lavage rotative fonctionnant à une pression trop élevée

Têtes de lavage rotatives ou fixes

Grâce à leur construction simple, les têtes de lavage fixes sont fiables et bon marché. Les têtes de lavage rotatives pulvérisent totalement la surface des parois d'une cuve

alors que les têtes fixes ne pulvérisent que sur des points précis. La surface restante est simplement nettoyée par l'écoulement du liquide (voir Fig 6). En comparaison, une tête de lavage consomme beaucoup moins de liquide qu'une boule fixe.

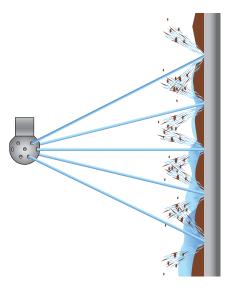


Figure 6 : Nettoyage avec une tête fixe

CE QU'IL FAUT SAVOIR AVANT DE FAIRE UN CHOIX

3 Nettoyage chimique

Dans la majorité des procédés de nettoyage, l'effet chimique est obtenu par un fluide qui permet soit de dissoudre les salissures, soit de réduire leur adhésion aux parois de la cuve. Une augmentation de la température peut améliorer le résultat.

Nettoyage avec des produits moussants

Le nettoyage avec des produits moussants est un nettoyage de type chimique. La mousse adhérant mieux aux parois, elle peut agir plus longtemps qu'un liquide qui s'écoule. Le nettoyage mécanique joue alors un rôle moins important. La buse doit pulvériser la mousse de façon homogène et le choix du type de produit moussant est donc essentiel.

4 Impact

La force d'impact d'un jet de liquide sur une surface joue un rôle important dans l'efficacité du nettoyage. L'impact (I) est le rapport de la force d'impact (F) sur la surface (A).

$$I = \frac{\text{Force d'impact}}{\text{Surface d'impact}} = \frac{F}{A} \left[\frac{N}{m^2} \right]$$

Elle peut être contrôlée par les paramètres suivants :

Surface d'impact et forme de jet

La surface d'impact est la zone touchée par les gouttelettes. Plus la zone d'impacte est petite, plus l'impact est grand. Les buses ayant un impact élevé sont par exemple les buses à jet rectiligne et les buses à jet plat avec un angle de pulvérisation étroit.

Pression

L'impact augmente linéairement avec la pression. En doublant la pression et en gardant un débit identique, on double l'impact.

Figure 7 : Nettoyage avec un produit moussant et une buse Lechler MicroWhirly en PVDF.

Débit

Augmenter le débit en utilisant une buse plus grosse permet d'accroître l'impact, tant que les autres paramètres (angle de pulvérisation, pression et liquide) restent inchangés.

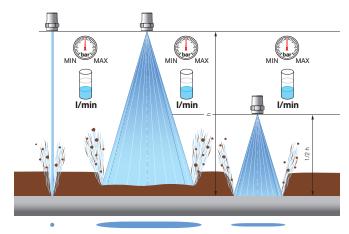


Figure 8 : Comparaison de l'efficacité du nettoyage de trois buses différentes avec une pression et un débit identique.

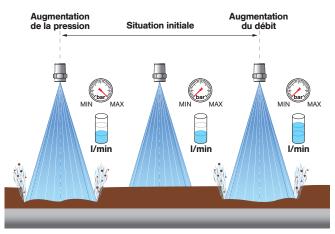
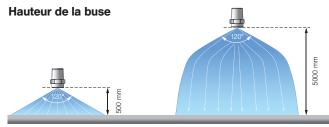


Figure 9 : Comparaison du résultat du nettoyage de trois buses identiques avec des variations de pression et de débit.

(5) Angle, distance de pulvérisation et forme du jet

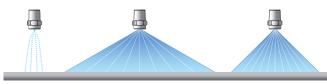
Selon les versions utilisées et les applications, les buses mono-fluides ont un angle de pulvérisation qui peut varier de 0° (buse à jet rectiligne) à 360° (tête de lavage). Les angles donnés sont mesurés à proximité de l'orifice de la buse et dans une atmosphère stable. La gravité et l'instabilité de l'air influencent la forme du jet.

Les buses mono-fluides peuvent, selon leur type, pulvériser en cône plein, en cône creux, en jet plat ou jet rectiligne.

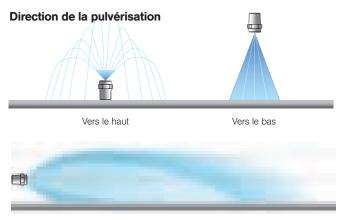

Les jets rectilignes ne pulvérisent pas réellement mais produisent un jet étroit qui se concentre en un point. Le jet ne se désagrège qu'à partir d'une certaine distance. Les buses bi-fluides ont un angle de pulvérisation étroit, d'environ 20°, dû à la grande vitesse du mélange à l'orifice de la buse. Cependant, avec l'augmentation de la distance, le jet devient moins bien délimité. Les buses bi-fluides produisent normalement des cônes pleins ou des jets plats.

6 Conception hygiénique et état de surface

Les équipements et composants doivent être conçus de façon à être faciles à nettoyer. La conception hygiénique évite la création de parties creuses et de trous qui peuvent abriter des salissures ou gêner le bon écoulement des fluides. De plus, une attention particulière est portée à l'état de surface, la rugosité ne devant pas atteindre un Ra maxi de 0,8 µm. Lechler fournit des buses et des têtes de lavage


qui ont été conçues en suivant ces spécifications et qui ont été certifiées par l'EHEDG (European Hygienic Engineering & Design Group). La certification EHEDG prend en compte aussi bien la nettoyabilité que la conception du produit. Le test de nettoyabilité permet de savoir si un équipement peut être nettoyé aussi facilement qu'une simple section de tube droite.

Le dessin ci-dessus illustre l'influence de la hauteur de pulvérisation sur la forme du jet


Modification de la pression

Pression très basse

Pression optimale

Pression très forte

Horizontalement

Figure 10 : Différentes formes de jet selon les conditions de service et le type d'installation.

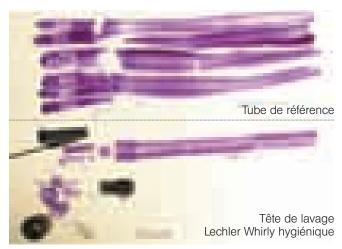


Figure 11 : Test de nettoyabilité EHEDG d'une tête de lavage Lechler Whirly hygiénique. Le résultat ne montre aucune différence entre le tube étalon et la buse. Dans les deux cas, les zones propices au développement de bactéries restent mauves, indiquant aucune formation de bactéries.

Pour la fabrication de nombreuses têtes de lavage Lechler, nous n'utilisons que des matériaux en accord avec les prescriptions de la **FDA** (Food and Drug Administration).

Les têtes de lavage séries 573 / 583 et les têtes fixes séries 527 / 591 répondent également aux strictes spécifications en matière d'hygiène de la norme sanitaire **3-A**[®].

CE QU'IL FAUT SAVOIR AVANT DE FAIRE UN CHOIX

7 Répartition du liquide

Une répartition uniforme du liquide est cruciale dans certains procédés de fabrication tels que le revêtement. Cela nécessite de réaliser l'implantation de plusieurs buses les unes à côté des autres. En effet, alors qu'une buse isolée produit une répartition parabolique, plusieurs buses installées côte à côte avec un recouvrement adapté produisent une répartition équilibrée du liquide.

Figure 12 : Mesure de la répartition de liquide.

Mesurer la répartition

La distribution du liquide dans un plan peut être déterminée grâce à un ensemble de tubes éprouvettes. Le niveau de remplissage de chaque tube se fait alors automatiquement. Ce procédé de mesure permet également d'enregistrer la distribution d'un liquide sur un plan en mouvement. Cela permet par exemple de simuler la pulvérisation sur un convoyeur.

8 Taille de gouttelettes

Les buses bi-fluides peuvent produire des gouttelettes de taille fines à très fines. La taille dépend essentiellement du rapport entre le débit du fluide compressible utilisé (en m³/h) et celui du fluide atomisé (en I/min). Plus ce rapport est élevé, plus l'atomisation est fine. Dans le cas des buses mono-fluides, les facteurs décisifs sont la pression, le type de buse et le débit. Augmenter la pression entraîne une atomisation plus fine, mais seulement jusqu'à un certain niveau.

Figure 13 : Mesure de la taille des gouttelettes.

A pression et débit équivalents, les buses à cône creux produisent des gouttelettes de taille très fines à fines. Les buses à cône plein produisent des gouttelettes sensiblement plus grosses et enfin les buses à jet plat produisent les gouttelettes les plus grosses.

Généralement, à pression constante, les buses d'une série donnée produisent des gouttelettes de moins en moins fines lorsque leur débit augmente.

Omportement des matériaux des buses en fonction de la température

Les applications avec des températures jusqu'à 140° C sont communes. On les rencontre par exemple dans le nettoyage et la stérilisation. Les applications à plus haute température sont rares et celles à très basse température encore plus rares. Les informations données sur la température d'utilisation des différents matériaux doivent toujours être scrupuleusement respectées dans chaque cas d'utilisation de buses. La pression. les contraintes mécaniques, les produits chimiques

utilisés et la durée de lavage sont autant de facteurs à prendre en compte lorsque la température de service est augmentée. Certains produits chimiques sont plus agressifs à haute température. Certains matériaux peuvent les supporter si cette température dure un temps limité. Pour tous les matériaux, une température élevée entraîne une baisse de la résistance mécanique. Les contraintes mécaniques doivent donc être prises en considération en particulier lors d'applications à haute pression. De plus, les vibrations de l'ensemble peuvent provoquer un vieillissement prématuré.

Pression et résistance mécanique (vibrations)

Comportement des matériaux des buses en fonction de la température

Durée d'utilisation (température élevée en permanence)

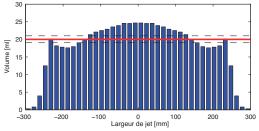


Figure 14 : Répartition du liquide d'une buse à haute pression Lechler

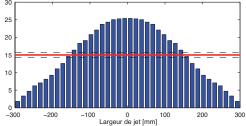


Figure 15: Répartition du liquide d'une buse à jet plat standard Lechler.

10 Viscosité

Accroître la viscosité d'un fluide peut réduire le débit, changer la forme du jet (angle de jet plus étroit) et augmenter la taille des gouttes.

En fonction des propriétés du fluide, il est possible, dans une certaine mesure, d'aller à l'encontre de cette règle grâce à une augmentation de la pression. Pour des substances très visqueuses, il est généralement recommandé d'utiliser des buses bi-fluides. Prendre en compte la rhéologie du fluide peut également apporter une aide.

Figure 16 : Atomisation de gélatine avec une buse bi-fluide Viscomist de Lechler.

1) Plus petite section de passage

Le risque de bouchage de la buse dépend beaucoup de sa plus petite section de passage (Diam E). L'expérience montre que pour une utilisation sans bouchage, la taille des particules véhiculées dans le fluide,

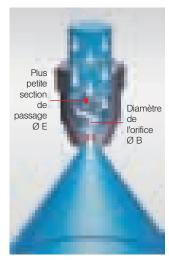


Figure 17 : Plus petite section de passage.

ne doit pas excéder le tiers de la plus petite section de passage. Les buses à cône creux et les buses à cône plein axiales ont une hélice interne. Les buses à cône plein et creux avec l'arrivée du liquide sur le côté (tangentiel ou excentrique) n'utilisent pas d'hélice et sont moins sensibles au bouchage. Parmi les autres types de buses, les buses à jet rectiligne sont les moins sujettes au risque de bouchage.

12 Raccordement

Les buses sont essentiellement fabriquées selon les normes de filetage ISO 228, DIN 2999 (EN 10226-1) et NPT. On distingue les filetages avec ou sans étanchéité dans le filet. Dans le cas des filetages avec étanchéité dans le filet, un ruban de Téflon® ou une pâte pour filetage sont utilisés afin d'assurer cette dernière. Toutes les buses ne peuvent pas être raccordées par un filetage. Nous fournissons alors des buses à bride conforme aux normes DIN 2527. EN 1092-1et ASME B 16.5. Des raccords à serrage aseptiques sont également disponibles (Tri-clamp) conformes à la norme DIN 11864-3. Au cas par cas nous pouvons fournir des buses avec un raccordement autre que les principaux standards.

(13) Matériaux et usure

L'usure des buses dépend beaucoup des conditions d'utilisation et des matériaux employés. Naturellement, l'orifice de la buse subit une usure due à l'abrasion. Les conditions d'utilisation suivantes peuvent accélérer l'usure:

- La présence de solides ou de particules dures dans le fluide
- L'utilisation de la buse à une pression supérieure aux recommandations
- L'utilisation de produits chimiques agressifs

Le corps de la buse peut également subir une usure externe lorsqu'il est soumis à un environnement agressif (gaz corrosifs, radiations, température, eau chargée de particules).

Usure de la buse

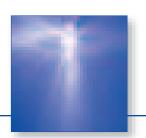
Avec l'augmentation de l'usure, la qualité de la pulvérisation s'amenuise. Dans la plupart des cas, cela peut se constater à l'œil nu. Dès cet instant, les paramètres de pulvérisation sont modifiés, on constate par exemple une augmentation du débit du fluide. Ceci est le résultat de la disparition d'une partie de la matière à l'orifice de la buse. L'usure conduit alors à une baisse de la qualité de production et à une augmentation des coûts de fabrication. La Fig 18 montre un bon exemple d'une tête de lavage fixe ayant subi une usure sévère. Pour ces raisons, la maintenance à intervalles réguliers et le remplacement des buses sont indispensables pour assurer un haut niveau de capacité de production.

Sélection des matières

Les manifestations particulièrement sévères de l'usure se produisent lorsque des fluides très chargés sont pulvérisés. De tels fluides engendrent une usure significative si les particules en suspension ont une dureté plus élevée que la matière de la buse (Fig 19). On peut remédier à cela en sélectionnant une matière mieux adaptée. Le tableau ci-dessous montrant différentes matières et leur dureté Vickers permet une première approche dans la sélection de la matière.

Contactez- nous et nous vous aiderons à trouver une solution optimale correspondant à votre application.

Figure 18 : Corrosion chimique d'une tête de lavage fixe.


Figure 19 : Usure d'une buse à cône

Matière de la buse	Dureté Vickers (HV)
Aluminium	~ 80
Laiton	80 – 150
Titane (Grade 1 à 4)	125 – 210
Hastelloy®	200 – 250
Acier inoxydable	220 – 270
Acier inoxydable durci	390 – 690
Carbure	1000 – 2300
Céramique	1500 – 2700
Saphir / Rubis	~ 2300

Têtes de lavage rotatives »PrecisionWhirly«

- Tête extrêmement petite et précise, bien adaptée aux espaces étroits
- Adaptée aux températures élevées
- Auto-tournante
- Jets rectilignes rotatifs
- Tout inox

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Fûts et tonnelets
- Machines

Diamètre max. de réservoir : 1.0 m

Pression de service :

1.0 - 2.0 bar

Température max. :

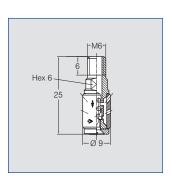
200 °C

Installation:

Fonctionnement possible dans toutes les positions

Matière :

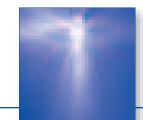
Acier inoxydable (316L)


Rotation:

Palier de glissement kolstérisé

Filtration:

Filtre en ligne (env. 0.3 mm/ Mesh 50)


Angle de jet	Référence	E Ø	Raccor- dement	v [l/min] p [bar] (p _{max} = 5 bar)				Hauteur [mm]	Diamètre [mm]
∢		[mm]		1	2				
300°	500.234.G9.00	1.8	M6	5.7	8.0	9.8 2.5		25	9

E = Plus petite section de passage

Nota: L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Têtes de lavage rotatives »MicroWhirly«

Série 566

- Configuration très compacte
- Auto-tournante
- Jets plats efficaces

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Fûts
- Machines

Par ex.: nettoyage des machines de remplissage

Diamètre max. de réservoir :

1.0 - 1.5 m

Pression de service :

1.0 - 2.0 bar

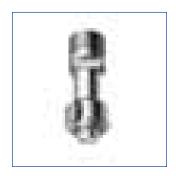
Température max. :

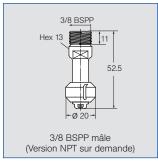
130 °C

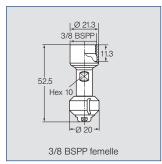
Installation:

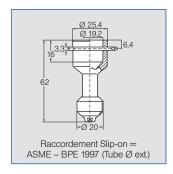
Fonctionnement possible dans toutes les positions

Matière:


Acier inoxydable (316L) et PEEK


Rotation:


Palier de glissement en PEEK


Filtration:

Filtre en ligne (env. 0.3 mm/Mesh 50)

Angle		Référence	e		E Ø		Ý	[l/min]		
de jet ע	Туре	I	Raccordemen	t	[mm]		$\mathbf{p} \text{ [bar] } (p_{\text{max}} = 5 \text{ bar})$			
\$		3/8 BSPP* mâle	3/8 BSPP* femelle	3/4" Slip-on		1	2	3	à 40 psi [US gal./min]	
180°	566.873.1Y	AE	AF	TF	2.4	12	15	18	5	
	566.933.1Y	AE	AF	TF	2.4	15	21	26	7	
180°	566.874.1Y	AE	AF	TF	2.4	12	15	18	5	
	566.934.1Y	AE	AF	TF	2.4	15	21	26	7	
360°	566.879.1Y	AE	AF	TF	2.4	12	15	18	5	
	566.939.1Y	AE	AF	TF	2.4	15	21	26	7	

E = Plus petite section de passage · * NPT sur demande · Version à souder sur demande

Nota: L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettovage.

Versions Slip-on: - Goupille en acier inoxydable (316L) comprise - (Référence: 095.022.1Y.50.94.E)

- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.

Exemple de	Туре	+	Raccordement	=	Référence complète
commande :	566.873.1Y	+	AE	=	566.873.1Y.AE

Têtes de lavage rotatives »MicroWhirly«

Série 500.191

- Bon rapport qualité/prix
- Auto-tournante
- Jets plats efficaces

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Par ex.: nettoyage des machines de remplissage, nettoyage de fûts

Diamètre max. de réservoir :

1.0 - 1.5 m

Pression de service :

1.0 - 2.0 bar

Température max. :

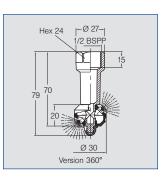
90 °C

Installation:

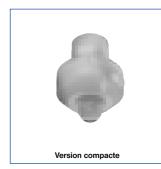
Fonctionnement possible dans toutes les positions

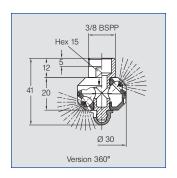
Matière:

PVDF


Rotation:

Palier de glissement en PVDF


Filtration:


Filtre en ligne (env. 0.3 mm/ Mesh 50)

Angle	Référence	E	Raccor-							
de jet	Type	Ø [mm]	dement BSPP		p [bar] (p	o _{max} = 5 ba				
\triangleleft			femelle	1	2	3	à 40 psi [US gal./min]			
180°	500.191.5E.02	2.2	1/2"	9	13	16	4			
180°	500.191.5E.01	2.2	1/2"	9	13	16	4			
360°	500.191.5E.00	2.2	1/2"	14	20	24	6			

Angle	Référence	E	Raccor-	p [bar] (p _{max} = 5 bar)						
de jet	Type	Ø [mm]	dement BSPP							
\triangleleft		. ,	mâle	1	2	à 40 psi [US gal./min]				
180°	500.191.5E.21	2.2	3/8"	9	13	16	4			
360°	500.191.5E.22	2.2	3/8"	14	20	24	6			

E = Plus petite section de passage

Nota : L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Têtes de lavage rotatives »HygienicWhirly« Séries 594 / 595

Séries 594 / 595

- Nettoyage par pulvérisation de mousse à basse pression
- Auto-tournante
- Jets plats efficaces

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Réservoirs
- Machines

Par ex. : nettoyage des machines de remplissage à froid.

Diamètre max. de réservoir :

1.5 m

Type 595.139 jusqu'à 2.5 m

Pression de service :

0.5 - 3.0 bar

Température max. :

100°C et sur courte période jusqu'à 140°C

Installation:

Fonctionnement possible dans toutes les positions

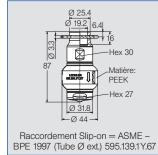
Matière :

PEEK et acier inoxydable 316L, Version EHEDG : joint en EPDM

Rotation:

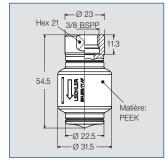
Palier de glissement en PEEK

Filtration:

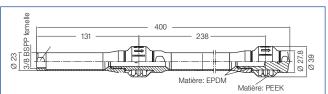

Filtre en ligne (env. 0.3 mm/Mesh 50)

Lance rotative

Version EHEDG



Version Standard



Angle		Référen	ce		E Ø	Ů [l/min]					
de jet ✓	Туре	Raccordement			اط [mm]		p [ba	ar] (p _{max} =	= 5 bar)		
4		3/8 BSPP* femelle	3/4 BSPP* Version femelle EHEDG			0.5	1	2	3	à 40 psi [US gal./ min]	
360°	594.829.1Y.XX	AF	-	67	1.7	6	8	11	14	3	
	594.879.1Y.XX	AF	-	67	2.5	8	11	15	18	5	
	595.009.1Y.XX	AF	-	67	4.0	16	22	32	39	10	
	595.049.1Y.XX	AF - 67			4.2	20	28	40	49	12	
	595.139.1Y.XX	-	AL	67	5.0	34	47	67	82	21	

Versions Slip-on : Goupille en acier inoxydable (316L) comprise - (Réf.: 095.022.1Y.50.94.E) Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.

Angle de jet	Référence Type	E Ø	Raccor- dement	Ý [l/min]									
uc jet	1,00	[mm]	domon		$\mathbf{p} [bar] (p_{max} = 5 bar)$								
<		. ,		0.5	0.5 1 2 3 [US gal/min]								
360°	500.384.1Y.02	1.5	3/8"*	16	22	30	36	10					

E = Plus petite section de passage
*NPT sur demande

Têtes de lavage rotatives »MicroSpinner« / »MiniSpinner« Séries 5MC / 5MI

- Bon rapport qualité / prix
- Autotournante
- Modèle à fente

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir :

5MC:1.3 m 5MI: 3.0 m

Pression de service :

1.0 - 2.5 bar

Température max. :

140 °C

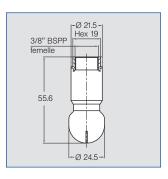
Installation:

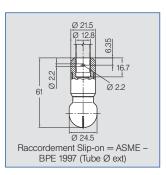
Fonctionnement possible dans toutes les positions

Matière:

Acier inoxydable (316L) et acier inoxydable 440C

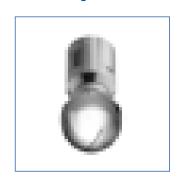
Rotation:

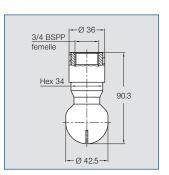

Double roulement à billes en acier inoxydable

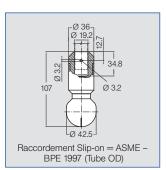

Filtration:

Filtre en ligne (env. 0.1 mm/ Mesh 170)

Tête de lavage rotative "MicroSpinner" - Série 5MC






Angle	R	éférence		E							
de jet	Time		cordement	ordement [mm]		Ø [mm] p [bar] (p _{max} = 5 bar)					
≰	Туре	3/8" BSPP*	1/2" Slip-on		1 2		3	à 40 psi [US gal./min]			
60°	5MC.042.1Y	AF	TF05	3.0	28	40	49	12			
180°	5MC.004.1Y	AF	TF05	0.8	22	32	39	10			
360°	5MC.049.1Y	AF	TF05	0.9	28	39	48	12			

^{*} NPT sur demande

Tête de lavage autotournante "MiniSpinner" - Série 5MI

Angle		Référe	ence		E Ø	v [l/min] p [bar] (p _{max} = 5 bar)				
de jet	Type		Raccorde		[mm]					
\triangleleft	туре	1/2 BSPP*				1	2 3		à 40 psi [US gal./min]	
60°	5MI.162.1Y	АН	-	TF07	2.6	45	63	77	20	
180°	5MI.114.1Y	-	AL	TF07	1.0	47	67	82	21	
360°	5MI.054.1Y 5MI.074.1Y 5MI.014.1Y 5MI.209.1Y	- - -	AL AL AL AL	TF07 TF07 TF07 TF07	0.5 0.6 0.9 1.5	21 35 49 71	30 49 69 100	37 60 85 122	9 15 21 31	

 $^{^\}star$ NPT sur demande \cdot D'autres versions slip-on sur demande. \cdot Versions à souder sur demande


Nota: L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Versions Slip-on : - Goupille en acier inoxydable (316L) comprise - Réf. : 095.022.1Y.50.60 (5MI), Réf. : 095.013.1E.05.59 (5MC)

⁻ Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage

Têtes de lavage rotatives »Whirly«

Conforme au P

■ Puissants jets plats

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir :

Rinçage: 5.0 m Nettoyage: 3.0 m

Pression de service :

1.0 - 2.5 bar

Température max. :

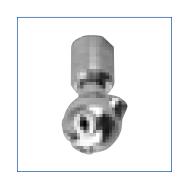
140 °C

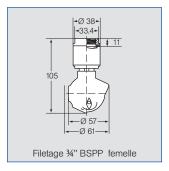
Installation:

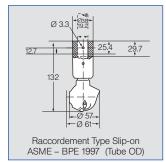
Fonctionnement possible dans toutes les positions; A l'horizontal, la rotation démarre à 2 bar.

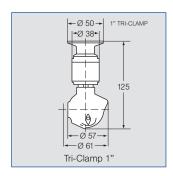
Matière:

Acier inoxydable (316L), PEEK et Rulon 641


Rotation:


Double roulement à billes en acier inoxydable


Filtration:


Filtre en ligne (env. 0.1 mm/ Mesh 170)

Disponible aussi avec la norme ATEX

Angle de		Ré	férence			E Ø		V [l.	/min]	
jet	Type		Raccor	dement		ש [mm]		·)		
		3/4 BSPP* femelle	3/4" Slip-on	1" Slip-on	1" Tri- Clamp		1	2	3	à 40 psi [US gal./ min]
270°	569.055.1Y	AL	TF07	TF10	10	3.6	36	48	62	15
	569.135.1Y	AL	TF07	TF10	10	4.8	52	71	87	22
	569.195.1Y	AL	TF07	TF10	10	5.6	69	97	119	30
270°	569.056.1Y	AL	TF07	TF10	10	3.6	36	48	62	15
	569.106.1Y	AL	TF07	TF10	10	4.8	41	58	71	18
	569.196.1Y	AL	TF07	TF10	10	5.6	69	97	119	30
360°	569.059.1Y	AL	TF07	TF10	10	3.2	36	48	62	15
	569.139.1Y	AL	TF07	TF10	10	3.6	52	71	87	22
	569.199.1Y	AL	TF07	TF10	10	4.8	69	97	119	30
	569.279.1Y	AL	TF07	TF10	10	7.1	103	145	178	45

E = Plus petite section de passage · * NPT sur demande · Versions à souder sur demande

Nota : L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Versions Slip-on: - Goupille en acier inoxydable (316L) comprise - (Réf. Goupille: 095.022.1Y.50.60.E)

- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.

Exemple de Type Raccordement Référence complète commande: 569.103.1Y. + AL 569.103.1Y.AL

Têtes de lavage autotournantes

Séries Pop-up 500.382 / 500.453

Conforme au

- Pour installation sur les parois des réservoirs
- Nettoyage possible avec de la mousse
- Fonctionnement à basse pression possible
- Autotournante
- Jet plat efficace

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Par exemple : industries des boissons et agroalimentaire, industries chimique et pharmaceutique.

Diamètre max. de réservoir :

1.5 m

Type 500.453. Ø jusqu'à 2.5 m

Pression de service :

1.5 - 2.0 bar, pression d'ouverture env. 0.8 bar

Température max. :

140 °C

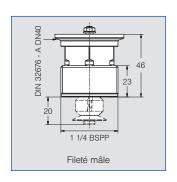
Installation:

Fonctionnement possible dans toutes les positions

Matière :

Acier inoxydable 316L Ressort en acier inoxydable 301, PEEK, Joint en FPM (500.453.1Y.XX), EPDM (500.382. 1E.XX)

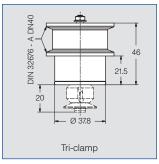
Rotation:

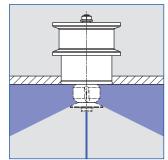

Palier lisse en PEEK

Filtration:

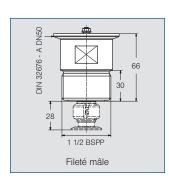
Filtre en ligne (env. 0.3 mm/Mesh 50)

Type Réf.: 500.382.1E.02

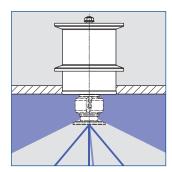



Série 500.382

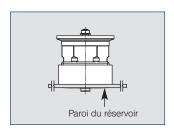
Е	Débit V [I/min]										
Ø [mm]	1	2	3	à 40 psi [US gal./min]							
1.1	7.6	10.8	13.2	3.4							

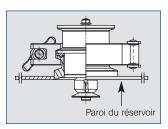

Type Réf.: 500.382.1E.06

Type Réf.: 500.453.1Y.AR



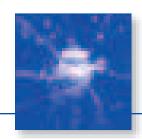
Série 500.453


Е	Débit V [l/min]										
Ø [mm]	1	2	3	à 40 psi [US gal./min]							
1.2	28.3	40	49	12.4							


A DN50 66 21.5 - Ø 49.8 Tri-clamp

Installation d'une buse filetée en position d'arrêt

Installation d'une buse Tri-clamp en position de marche


Nota : L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Têtes de lavage rotative en Teflon® »Whirly«

Séries 573 / 583

1)

2)

Conforme au FD

- Auto-rotative
- Puissants jets rectilignes en rotation
- Préconisée pour cuves en verre et en émail

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir :

Rinçage: 5.0 m Nettoyage: 3.0 m

Pression de service :

1.0 - 2.0 bar

Température max. :

95 °C

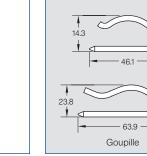
(Version pour températures plus élevées, sur demande)

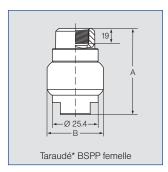
Installation:

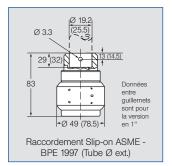
Fonctionnement possible dans toutes les positions

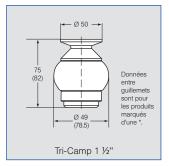
Matière:

PTFE (Teflon®)


Rotation:


Palier de glissement en PTFE


Filtration:


Filtre en ligne (env. 0.3 mm/ Mesh 50)

Angle de				Référen	ce			E Ø		V [l/	/min]		Hauteur	Dia- mètre
jet V		Type		Rad	ccordeme	nt		[mm]	p [ba	r] (p _{ma}	x = 6 b	ar) à		metre
	Goupille		3/4 BSPP* femelle	1 BSPP* femelle	3/4" Slip-on	1" Slip-on	1 1/2" Tri- Clamp		1	2	3	40 psi [US gal./ min]	A [mm]	B [mm]
180°	1)	583.114.55	AL	-	TF07	TF10	15	2.1	47	67	82	21	74	49
	1)	583.264.55	AL	-	TF07	TF10	15	3.3	103	145	178	45	74	49
	2)	583.344.55	-	AN	-	TF10	15*	7.1	159	225	276	70	100	78.5
180°	1)	573.114.55	AL	-	TF07	TF10	15	2.1	47	67	82	21	74	49
	1)	573.264.55	AL	-	TF07	TF10	15	3.3	103	145	178	45	74	49
	2)	573.344.55	-	AN	-	TF10	15*	7.1	159	225	276	70	100	78.5
270°	1)	583.116.55	AL	-	TF07	TF10	15	2.4	47	67	82	21	74	49
	1)	583.266.55	AL	-	TF07	TF10	15	3.4	103	145	178	45	74	49
	2)	583.346.55	-	AN	-	TF10	15*	5.9	159	225	276	70	100	78.5
270°	1)	573.116.55	AL	-	TF07	TF10	15	2.4	47	67	82	21	74	49
	1)	573.266.55	AL	-	TF07	TF10	15	3.4	103	145	178	45	74	49
	2)	573.346.55	-	AN	-	TF10	15*	5.9	159	225	276	70	100	78.5
360°	1)	583.209.55	AL	-	TF07	TF10	15	3.5	71	100	122	31	74	49
	1)	583.269.55	AL	-	TF07	TF10	15	4.8	103	145	178	45	74	49
	2)	583.279.55	-	AN	-	TF10	15*	3.7	106	150	184	47	100	78.5
	2)	583.349.55	-	AN	-	TF10	15*	5.6	159	225	276	70	100	78.5

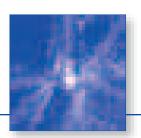
 $\mathsf{E} = \mathsf{Plus}$ petite section de passage \cdot * NPT sur demande

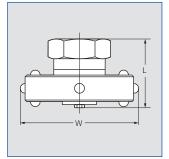
Nota : L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage. Teflon® est une marque protégée de la Sociéte E. I. Dupont De Nemours et Company.

Versions Slip-on: - Goupille en acier inoxydable (316L) comprise - (Réf. Goupille 1:095.022.1Y.50.88.E -

Réf. Goupille 2: 095.022.1Y.50.60.E)

- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.




Têtes de lavage rotatives type « Gyro »

Série 577, Série 579

- Tête de lavage de réservoir autotournante en acier inoxydable
- Actionnée et lubrifiée par le liquide de nettoyage
- Orifices de buse à jet plat pour nettoyage tous azimuts particulièrement puissant
- Grandes sections transversales libres, moins susceptible de blocage

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir : 6.0 m

Pression de service recommandée :

1.0-3.5 bar, max. 5.0 bar

Température max. : 90°C

Poids:

NPT 1" 750 g NPT 2" 1800 g NPT 3" 3600 g

Matière :

Acier inoxydable 316L

Rotation:

Palier de glissement en Teflon® (PTFE)

Accessoires:

Jeu de pièces de rechange

- Joint supérieur
- Joint inférieur
- Boulon
- Écrou
- Manchon
- Mode d'emploi

Raccordement	Référence
NPT 1"	057. 701. 55
NPT 2"	057. 702.55
NPT 3"	057. 703. 55

∢	Ré	éférenc	ce									Diamètre
_	Туре	Rac	corder	ment			V [l/min]			Dimer	nsions	de jet efficace
Angle de jet							p [bar]					
Angle		NPT 1"	NPT 2"	NPT 3"	1	2	3	5	à 40 psi [US gal./ min]	Longueur [mm]	Largeur [mm]	Ø [m]
180°	577. 283. 17	BN	-	-	115	163	200	258	50	68.4	118	4
	577. 363. 17	BN	-	-	182	258	316	408	80	68.4	118	4
	577. 404. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 434. 17	-	BW	-	273	386	473	610	120	103	151	5
	577. 524. 17 577. 564. 17	-	BW	- MB	452 564	639 798	783 977	1010 1262	170 250	103 116	151 188	5 6
	577. 504. 17 577. 594. 17			MB	677	958	1173	1515	300	116	188	6
	577. 614. 17			MB	791	1118	1369	1768	350	116	188	6
180°		DN										4
	579. 284. 17 579. 364. 17	BN BN	-		115 182	163 258	200 316	258 408	50 80	68.4 68.4	118 118	4
	579. 404. 17	- DIA	BW		228	322	394	509	100	103	151	5
	579, 434, 17	_	BW	_	273	386	473	610	120	103	151	5
	579. 494. 17	_	BW	_	380	538	659	851	170	103	151	5
	579. 564. 17	-	-	МВ	564	798	977	1262	250	116	188	6
	579. 594. 17	-	-	MB	677	958	1173	1515	300	116	188	6
	579. 614. 17	-	-	MB	791	1118	1369	1768	350	116	188	6
270°	577. 285. 17	BN	-	-	115	163	200	258	50	68.4	118	4
	577. 365. 17	BN	-	-	182	258	316	408	80	68.4	118	4
	577. 405. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 435. 17	-	BW	-	273	386	473	610	120	103	151	5
	577. 495. 17	-	BW	-	380	538	659	851	170	103	151	5
	577. 566. 17 577. 596. 17	-	-	MB MB	564 677	798 958	977 1173	1262 1515	250 300	116 116	188 188	6 6
	577. 616. 17		_	MB	791	1118	1369	1768	350	116	188	6
360°	577. 289. 17	DNI		_	115	163	200	258	50	68.4	118	4
	577. 269. 17 577. 369. 17				182	258	316	408	80	68.4	118	4
	577. 409. 17	-	BW		228	322	394	509	100	103	151	5
	577. 439. 17	_	BW	_	273	386	473	610	120	103	151	5
	577. 499. 17	-	BW	-	380	538	659	851	170	103	151	5
	577. 569. 17	-	-	MB	570	806	987	1274	250	116	188	6
	577. 599. 17	-	-	MB	685	969	1187	1532	300	116	188	6
	577. 619. 17	-	-	MB	798	1128	1382	1784	350	116	188	6

Remarque: une pression plus élevée signifie généralement une usure plus élevée et des gouttelettes plus petites. Cela pourrait avoir des effets négatifs sur le résultat du nettoyage. Nous ne recommandons pas l'usage d'air comprimé.

Exemple de Type + Raccordement = Référence complète commande : 577. 404. 17. + BW = 577. 404. 17. BW

Têtes de lavage rotatives »XactClean®«

Séries 5W2 / 5W3

Conforme au NOUVEAU!

- Rotation contrôlée
- Puissant jet plat
- Buse de nettoyage de réservoirs très efficace

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir :

Rinçage: 9.0 m Nettoyage: 6.0 m

Pression de service :

3.0 - 7.0 bar

Température max. :

80 °C

Installation:

Fonctionnement possible dans toutes les positions

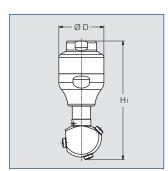
Matière:

Acier inoxydable 316L et PTFE

Rotation:

Palier lisse en matière PTFE

Filtration:


Filtre en ligne avec une efficacité de 0.1 mm/170 Mesh

Capteur Lechler pour contrôle de rotation :

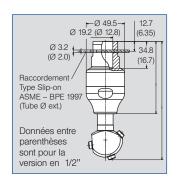
Cette série peut être utilisée avec le capteur de rotation Lechler.

Angle de jet			Réf	érence				E Ø	Ů [l/min]					
-	Туре				dement			[mm]	p	[bar] (p	$p_{\text{max}} = 2$	0 bar)		
≮		3/8 BSPP* femelle	1/2 BSPP* femelle	3/4 BSPP* femelle	1 BSPP* femelle	1/2" Slip- on	3/4" Slip- on		2	5	10	à 40 psi [US gal./ min]		
270°	5W2.875.1Y	AF	АН	-	-	TF05	-	1.7	15	24	34	4.7		
	5W2.995.1Y	-	АН	-	-	TF05	-	2.2	30	47	67	9.3		
	5W3.065.1Y	-	АН	AL	-	-	TF07	2.2	42	66	94	13.0		
	5W3.145.1Y	-	-	AL	AL -		TF07	3.8	70	111	157	21.7		
	5W3.205.1Y	-	-	AL	-	-	TF07	4.8	100	158	224	31.0		
	5W3.255.1Y	-	-	AL	AN	-	TF07	5.5	130	206	291	40.3		
270°	5W2.876.1Y	AF	АН	-	-	TF05	-	1.7	15	24	34	4.7		
	5W2.996.1Y	-	АН	-	-	TF05	-	2.2	30	47	67	9.3		
	5W3.066.1Y	-	АН	AL	-	-	TF07	2.2	42	66	94	13.0		
	5W3.146.1Y	-	-	AL	-	-	TF07	3.8	70	111	157	21.7		
	5W3.206.1Y	-	-	AL	-	-	TF07	4.8	100	158	224	31.0		
	5W3.256.1Y	-	-	AL	AN	-	TF07	5.5	130	206	291	40.3		
360°	5W2.879.1Y	AF	АН	-	-	TF05	-	1.52	15	24	34	4.7		
	5W2.999.1Y	-	АН	-	-	TF05	-	2.0	30	47	67	9.3		
	5W3.069.1Y	-	АН	AL	-	-	TF07	2.0	42	66	94	13.0		
	5W3.149.1Y	5W3.149.1Y		AL	-	-	TF07	3.5	70	111	157	21.7		
	5W3.209.1Y	-	-	AL	-	-	TF07	4.4 100		158	224	31.0		
	5W3.259.1Y -		-	AL	AN	-	TF07	5.0	130	206	291	40.3		

E = Plus petite section de passage. • * NPT sur demande.

Nota: L'utilisation de l'air comprimé n'est recommandée que ponctuellement. Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée provoque souvent une usure plus importante et une taille de gouttes plus réduite. Ceci aura probablement des effets inverses sur le résultat final du nettoyage.

Versions Slip-on : - Goupille en acier inoxydable (316L) comprise - (Réf. : 095.022.1Y.50.60.E (5W3) -


Réf.: 095.013.1E.05.59.0 (5W2)

- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.

Diamètre max. de réservoir [m]

Туре	Rinçage	Nettoyage
5W2.87X	4	3
5W2.99X	5	3
5W3.06X	7	4
5W3.14X	8	5
5W3.20X	9	6
5W3.25X	9	6

Туре	H1 (Version taraudée)	H2 (Slip- on)	Ø
5W2.87X	114	118	43
5W2.99X	114	118	43
5W3.06X	114	136	43
5W3.14X	146	167	60
5W3.20X	146	167	60
5W3.25X	146	167	60

Têtes de lavage Haute Performance

Série 5TM

- Motorisée et lubrifiée par le liquide de nettoyage lui-même
- Jet rectiligne très puissant

Applications:

Nettoyage des équipements suivants :

- Usines et installations
- Réservoirs
- Machines
- Camion –citerne
- Grands réservoirs

Diamètre max. de réservoir :

Rinçage: 24.0 m Nettoyage: 15.0 m

Pression de service :

2.0 - 5.0 bar

Température max. :

60°C

(Version pour températures plus élevées, sur demande)

Installation:

Fonctionnement possible dans toutes les positions

Matière :

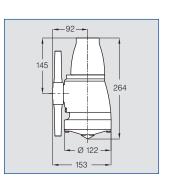
Acier inoxydable 316L Eléments d'engrenage en PTFE et en fibre de carbone

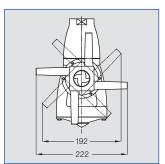
Poids:

approx. 7.5 kg

Rotation:

Roulement à billes et palier de glissement


Filtration:


Filtre en ligne (env. 0.2 mm/ Mesh 80)

Capteur Lechler pour contrôle de rotation :

Cette série peut être utilisée avec le capteur de rotation Lechler. Demandez plus d'information à ce sujet.

Angle de jet	Référence	Raccor- dement BSPP	E Ø [mm]	Nombre, Ø Buses [mm]		v [l/	min] max = 7 bar)				
\$		femelle	[]	[]	2	3	5	à 40 psi [US gal./ min]			
360°	5TM.208.1Y.AS	1 1/2	8	2×8.0	125	153	198	39			
	5TM.210.1Y.AS	1 1/2	10	2 x 10.0	160	196	253	50			
	5TM.406.1Y.AS	1 1/2	6	4×6.0	140	171	221	43			
	5TM.407.1Y.AS	1 1/2	7	4×7.0	170	208	269	53			
	5TM.408.1Y.AS	1 1/2	8	4×8.0	200	245	316	62			
	5TM.410.1Y.AS	1 1/2	10	4 x 10.0	260	318	411	81			

E = Plus petite section de passage

Le cycle de lavage dure entre 7 et 41 minutes en fonction du type et de la pression.

Capteur Lechler pour contrôle de rotation N'hésitez pas à nous demander plus d'information

Têtes de lavage fixes

Séries 527 / 591

Conforme au

Série 527

Jet rectiligne efficace

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir : 4.0 - 8.0 m

Pression de service :

1.0 - 3.0 bar

Température max. :

200 °C

Installation:

Fonctionnement possible dans toutes les positions

Matière:

Acier inoxydable 316L

Série 591

- Tête de lavage standard
- Jets rectilignes efficaces

Applications:

Nettoyage des équipements suivants:

- Usines et installations
- Réservoirs
- Machines

Diamètre max. de réservoir : 1.0 - 5.0 m

Pression de service :

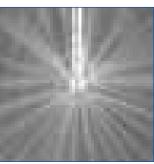
1.0 - 3.0 bar

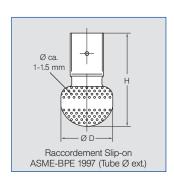
Température max. :

200 °C

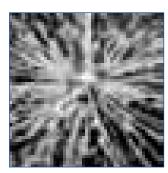
Installation:

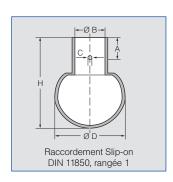
Fonctionnement possible dans toutes les positions


Matière:


Acier inoxydable 316Ti Goupille: Acier inoxydable 316L

D'autres matières sur demande (316L et PTFE)


Angle de jet	Référence Type	E Ø mm	Pour Tube Ø		p [ba	à 40 psi	Hauteur	Dia- mètre		
∢				1	2	3	[US gal./ min]	H [mm]	D [mm]	
360°	527.209.1Y.00.75	0.8	3/4"	42	60	73	95	19	68	32
	527.289.1Y.01.50	1.1	1 1/2"	120	170	208	269	50	116	65
	527.449.1Y.02.00	1.7	2"	297	420	514	664	127	152	102


Nota: Faire fonctionner une lête de lavage à une pression supérieure à celle préconisée pourra avoir des effets inverses sur le résultat final du nettoyage.

Versions Slip-on : - Goupille en acier inoxydable (316L) comprise

- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.

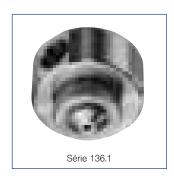
Angle	Référence	E	Efficacité			V [l/n	nin]			Dime	ensions ap	prox. [m	m]	
de jet	Туре	Ø [mm]	Nettoyage env. [m]	0.5	1.0	p [b	ar] 3.0	à 40 psi [US gal./ min]	Dia- mètre D	Hau- teur H	Raccor- dement	Slip- on*	С	А
360°	591.M11.17.00	0.8	0.5	7	10	14	17	4	20	32.5	8.2	DN8	2.2	9.0
	591.X11.17.00	1.2	0.5-1.0	25	35	49	61	15	24	37.5	12.2	DN10	2.2	9.0
	591.Y11.17.00	1.2	1-1.5	49	70	99	121	31	30	42	18.2	DN15	2.2	9.0
	591.A21.17.00	2.0	2-2.5	91	128	181	222	56	40	53	22.2	DN20	2.5	9.0
	591.B31.17.00	2.1	2.0-3.0	130	183	259	318	80	64	90	28.2	DN25	2.8	18.0
	591.B51.17.00	3.0	3.0-4.0	206	292	412	505	128	64	90	28.2	DN25	2.8	18.0
180°	591.A23.17.00	2.0	2.0-2.5	74	105	148	182	46	40	53	22.2	DN20	2.5	9.0
	591.B53.17.00	3.0	3.0-4.0	146	207	292	358	91	64	90	28.2	DN25	2.8	18.0
180°	591.B32.17.00	2.1	2.5-3.0	103	145	205	251	64	64	90	28.2	DN25	2.8	18.0
	591.D42.17.00	2.2	4.0-4.5	230	325	460	563	142	90	122	52.3	DN50	3.3	25.0

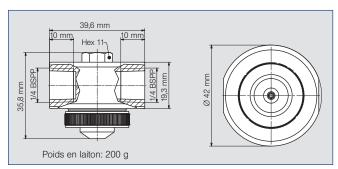
E = Plus petite section de passage · * Taraudé femelle sur demande

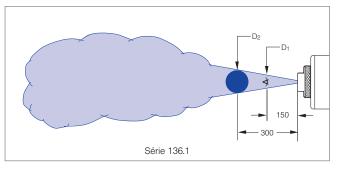
Nota : Faire fonctionner une tête de lavage à une pression supérieure à celle préconisée pourra avoir des effets inverses sur le résultat final du nettoyage.

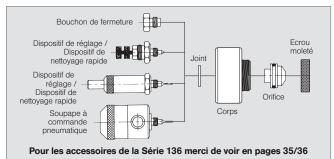
Versions Slip-on:

- Goupille en acier inoxydable (316L) comprise -
- Le débit peut augmenter en fonction de la fuite entre le tuyau de raccordement et la tête de lavage.




Atomiseurs pneumatiques, cône plein, principe de pression, mélange interne Série 136.1




Atomisation fine avec les cônes pleins au moyen d'air ou de gaz. Principe de pression de liquide. Mélange interne des fluides Applications :

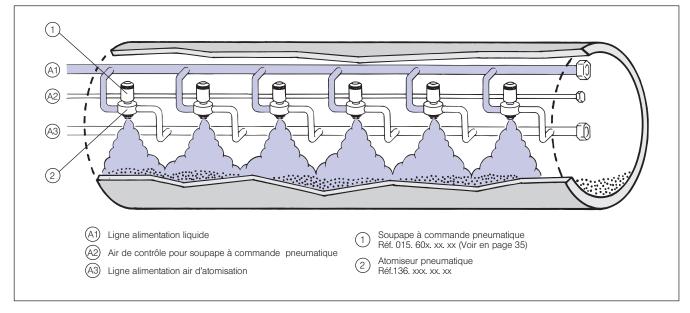
Humidification de l'air, refroidissement, désinfection (par ex. bouteilles), applications de revêtement, dosage et dépose.

\$	Référence			E Ø					Pressi	on liq	uide r	bar]						Diamètr	re du je	t
7	Type	Mat	. Nr.	[mm]		0.7			1.5			3.0			4.0					
Angle de jet		316L AL	Laiton nickelé 22		p Air [bar]	V Eau [l/h]	V n Air [m³/h]	p Air [bar]	V Eau [l/h]	V n Air [m³/h]	p Air [bar]	V Eau [I/h]	V n Air [m³/h]	p Air [bar]	Ý Eau [1/h]	V n Air [m³/h]	p Air [bar]	p Eau [bar]	D ₁	D ₂
20°					0.40	5.90 3.80	0.30 0.60	1.40	5.80 4.10	0.80	2.40 2.80	9.10 7.50	1.10	3.00 3.40	11.00 9.60	1.20 1.40	0.80	0.70 1.50	60	100
	136. 115. xx. A2	0	0	0.50	1.20	1.70	0.90	2.20 2.60	2.20 1.20	1.40 1.70	3.20 3.60 4.00	5.90 4.40 2.90	1.50 1.80 2.10	3.80 4.20 4.60	8.20 6.80 5.50	1.60 1.90 2.20	2.60 3.20 4.40	2.00 3.00 4.00	60 55 55	100 95 100
					- - -	- - -	- - -	- - -	- - -	- - -	4.40 4.80 5.20	2.00 1.10 0.40	2.50 2.80 3.00	5.00 5.40 5.80	4.10 2.90 2.10	2.50 2.80 3.10				
					0.80 1.20 1.60 2.00 2.40 2.80	4.70 4.40 4.00 3.50 3.00 2.70	1.50 1.90 2.30 2.60 3.00 3.20	1.20 1.60 2.00 2.40 2.80 3.20	7.00 6.60 6.20 5.80 5.40 4.90	1.80 2.20 2.60 3.00 3.40 3.70	2.80 3.20 3.60 4.00 4.40 4.80	9.10 8.70 8.40 8.00 7.70 7.30	3.30 3.70 4.10 4.50 4.80 5.20	3.40 3.80 4.20 4.60 5.00 5.40	10.60 10.30 9.90 9.60 9.30 8.90	3.90 4.30 4.60 5.00 5.40 5.80	1.40 2.20 2.80 3.40 4.20	0.70 1.50 2.00 3.00 4.00	55 55 55 60 60	90 95 100 100 100
	136. 125. xx. A2	0	0	0.50	3.20 3.60 4.00 4.40 4.80	2.00 1.60 1.30 1.00 0.60	3.70 4.10 4.50 4.90 5.20	3.60 4.00 4.40 4.80 5.20 5.60 6.00	4.40 3.90 3.50 3.10 2.70 2.30 1.90	4.10 4.50 4.80 5.20 5.60 5.90 6.30	5.20 5.60 6.00 - - -	7.00 6.60 6.20 - - -	5.60 5.90 6.30 - - -	5.80	8.60 - - - - -	6.10 - - - - -				

E = Plus petite section de passage (eau)


Suite en page 31.

Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 136. 115. xx. A2 + 1Y = 136. 115. 1Y. A2

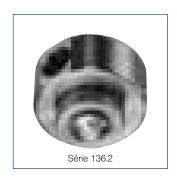

Atomiseurs pneumatiques, cône plein, principe de pression, mélange interne Série 136.1

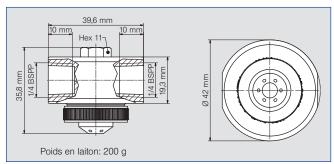
\$	Référence			E					Pressi	on liq	uide r	bar]						Diamètr	re du je	t
7	Type	Mat	. Nr.	Ø [mm]	0.7				1.5			3.0			4.0					
Angle de jet		1Y	Laiton nickelé 5		[bar]	ı [l/h]	. [m³/h]	[bar]	[l/h]	. [m³/h]	[bar]	[l/h]	. [m3/h]	[bar]	[l/h]	. [m³/h]	[bar]	[bar]		
Ang		316L	Laitor		p Air	V Eau	V n Air	p Air	V Eau	V n Air	p Air	V Eau	V n Air	p Air	V Eau	V n Air	p Air	p Eau	D ₁ [mm]	D ₂ [mm]
20°	136. 134. xx. A2	0	0	0.7	1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	13.20 12.40 11.80 11.40 11.10 10.80 10.60 10.40 10.10 9.90 9.50 9.00 8.50	2.70 3.30 3.90 4.40 4.90 5.50 6.00 6.50 7.00 7.60 8.10 8.60 9.20	2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	19.40 18.10 17.30 16.70 16.10 15.60 15.20 15.00 14.60 14.10	3.90 4.40 4.90 5.50 6.00 6.50 7.00 7.60 8.10 8.60 9.10	3.00 3.40 3.80 4.20 4.60 5.00 5.40 5.80	28.30 27.50 26.70 25.90 24.20 23.60 23.10	5.20 5.70 6.30 6.80 7.30 7.80 8.40 8.90	3.80 4.20 4.60 5.00 5.40 5.80	32.60 32.00 31.30 30.60 29.90 	6.20 6.80 7.30 7.80 8.40 8.90	1.80 2.80 3.80 5.20 6.00	0.70 1.50 2.00 3.00 4.00	55 60 60 65 65	95 105 105 105 110 110
	136. 142. xx. A2	0	0	2.5	1.40 1.80 2.20 2.60 3.00 3.40 3.80 4.20 4.60 5.00 5.40 5.80	24.20 20.40 20.00 19.30 17.60 16.50 17.00 16.30 15.10 14.00	5.10 6.30 7.20 8.20 9.30 10.40 11.40 12.40 13.30 14.30 15.30	1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	53.40 42.60 35.30 30.40 28.60 27.30 25.90 24.30 22.30 21.80 21.40	12.50 13.50 14.60 15.70	3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	70.80 62.50 55.70 49.30 44.60 41.90 40.40 39.70 - -	8.00 9.20 10.60 11.70 12.90 14.10 15.10 16.10 - -	3.80 4.20 4.60 5.00 5.40 5.80	93.20 83.10 75.30 69.00 63.40 57.50 - - -	9.20 10.10 11.30 12.50 13.70 14.90 - - - -	0.80 1.60 3.00 4.00 6.00	0.70 1.50 2.00 3.00 4.00	60 65 60 65 65	100 105 105 110 110

E = Plus petite section de passage (eau)

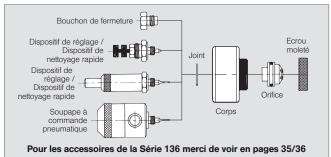
Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 136. 134. xx. A2 + 1Y = 136. 134. 1Y. A2

Atomiseurs pneumatiques, cône plein, principe de pression, mélange interne Série 136.2




Atomisation fine avec les cônes pleins au moyen d'air ou de gaz. Angle de jet particulièrement large 60°. Principe de pression de liquide.

Mélange interne des fluides


Applications:

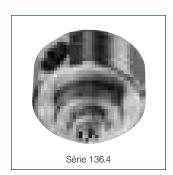
Humidification de l'air, refroidissement, désinfection (par ex. bouteilles), applications de revêtement, dosage et dépose.

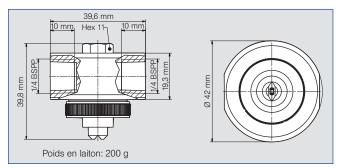
\$	Référence			E					Pressi	on liq	uide r	b [bar]					Diamètre du jet			
	Type	Mat	. Nr.	Ø [mm]		0.7			1.5			3.0			4.0					
e de jet		1Y	35		[bar]	[I/h]	[m ³ /h]	[bar]	[1/h]	[m3/h]	[bar]	[1/h]	[m ³ /h]	[bar]	[4/1]	[m ³ /h]	[bar]	[bar]		
Angle de		316L	Laiton nickelé		p Air	v Eau	√ n Air	p Air	V Eau	V n Air	p Air	V Eau	V n Air	p Air	¢ Eau	V n Air	p Air	p Eau	D ₁ [mm]	D ₂ [mm]
60°					1.00	3.00 1.80	1.30	1.60	5.80 4.90	1.70	2.80 3.20	8.50 7.20 5.70	2.40	3.80 4.20	9.40 8.20	3.10 3.50	1.00	0.70 1.50 2.00	200	330 380
	136. 215. xx. A2	0	0	0.5	1.40	0.70 - -	1.80 - -	2.00 2.20 2.40	3.80 2.80 1.70	2.10 2.30 2.50	3.60 4.00 4.40	4.00 2.20	3.20 3.60 4.10	4.60 5.00 5.40	6.90 5.40 3.80	3.90 4.20 4.70	2.40 3.20 4.20	3.00 4.00	230 245 250	385 390 410
					-	-	-	2.60	0.80	2.80	4.80 5.00	0.80	4.50 4.60	5.80 6.00	2.30	5.20 5.60	0.00	0.70	050	450
	136. 222. xx. A2	0	0	1.0	0.80 1.00 - -	17.50 6.00 - - -	2.80 4.30 - - -	1.60 1.80 2.00 2.20	25.90 14.70 6.70 1.90	4.00 5.30 6.70 8.10	3.00 3.20 3.40 3.60 3.80	40.40 31.50 22.20 14.60 8.50	5.80 6.90 8.20 9.50 11.00	3.80 4.00 4.20 4.40 4.60	54.90 45.60 37.60 29.60 21.60	6.40 7.30 8.50 9.70 11.20	0.80 1.60 2.30 3.20 4.20	0.70 1.50 2.00 3.00 4.00	250 245 245 250 245	450 465 465 465 465
					- - -	- - -	- - -	-	- - -	- - -	4.00	4.50 - - -	12.30 - - -	4.80 5.00 5.20 5.40	15.30 9.70 6.00 2.90	12.40 13.80 15.20 16.50				
	136. 231. xx. A2	0	0	1.4	1.60 2.00 2.40 2.80	25.60 17.80 11.30 6.90	5.10 6.20 7.20 8.10	2.60 3.00 3.40 3.80 4.20	44.20 33.00 24.70 18.10 13.20	7.00 8.20 9.20 10.20 11.20	3.60 4.00 4.40 4.80 5.20	93.70 78.30 65.80 54.90 45.60	7.90 9.30 10.60 11.90 13.00	4.20 4.60 5.00 5.40 5.80	132.90 117.20 101.10 87.90 76.60	9.00	2.00 2.60 2.40 3.60 4.20	0.70 1.50 2.00 3.00 4.00	235 245 255 255 265	380 415 420 425 430
					-	-	-	4.60	9.30	12.00	5.60 6.00	38.00 36.10	14.10 14.40	6.00	71.20	13.80 -				

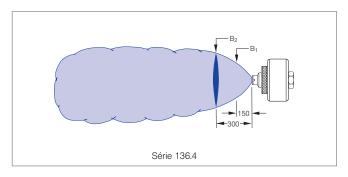
 $\mathsf{E} = \mathsf{Plus}$ petite section de passage (eau)

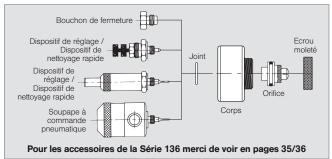
Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 136. 215. xx. A2 + 1Y = 136. 215. 1Y. A2

Atomiseurs pneumatiques, jet plat, principe de pression, mélange interne Série 136.4




Atomisation particulièrement fine avec les jets plats au moyen d'air ou de gaz. Principe de pression de liquide.


Mélange interne des fluides


Applications:

Humidification de bandes, refroidissement, humidification de produits, applications de revêtement, dosage (par ex. bande de convoyeur) et dépose.

\$	Référence			E					Pressi	on liq	uide r	bar]						Diamèti	re du je	t
	Type	Mat	t. Nr.	اط [mm]		0.7			1.5			3.0			4.0					
de jet		1Y	35		[bar]	[1/h]	[m ³ /h]	[bar]	[1/h]	[m ³ /h]	[bar]	[1/h]	[m ³ /h]	[bar]	[1/h]	[m ³ /h]	[bar]	[bar]		
Angle de		316L	Laiton nickelé		p Air	v Eau	V n Air	p Air	V Eau	V n Air	p Air	V Eau	V n Air	p Air	Ý Eau	∨ _n Air	p Air	p Eau	B ₁ [mm]	B ₂ [mm]
45°	136. 414. xx. A2	0	0	0.7	1.00 1.20 1.40 1.60 1.80	7.70 6.00 4.20 2.70 1.30	1.30 1.50 1.70 1.90 2.10	1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40	14.30 13.00 11.60 10.20 8.90 7.40 5.90 4.60 3.20 2.10 1.10	1.50 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40	2.20 2.60 3.00 3.40 3.80 4.20 4.60 5.00 5.40 5.80 6.00	22.40 20.00 17.70 15.50 13.30 11.00 8.80 6.60 4.30 2.50 1.60	2.00 2.30 2.60 3.00 3.40 3.70 4.10 4.50 4.90 5.30 5.50	3.00 3.40 3.80 4.20 4.60 5.00 5.40 5.80 6.00	25.10 23.00 20.90 18.90 16.90 14.90 12.80 10.80 9.80	2.50 2.80 3.10 3.50 3.80 4.20 4.60 5.00 5.20	1.40 2.40 3.20 3.80 4.60	0.70 1.50 2.00 3.00 4.00	85 100 105 120 130	125 145 155 170 210
	136. 443. xx. A2	0	0	1.0	1.20 1.40 1.60 1.80	13.90 11.90 9.50 7.80 - - - -	1.50 1.70 1.90 2.10 - - - -	1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60	26.60 24.30 22.00 19.90 18.00 16.20 14.40 12.80 11.30 9.90 8.80	1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60	3.00 3.40 3.80 4.20 4.60 5.00 5.40 5.80 6.00	37.10 33.10 29.50 26.20 23.00 20.20 17.60 14.90 -	2.60 3.00 3.40 3.80 4.20 4.60 4.90 5.30 5.50	3.60 4.00 4.40 4.80 5.20 5.60 6.00	45.60 41.90 38.30 35.00 31.80 29.00 26.20	2.90 3.30 3.70 4.00 4.50 4.90 5.20	1.20 2.00 2.80 3.80 4.80	0.70 1.50 2.00 3.00 4.00	110 115 145 150 160	165 190 190 210 230

 $\mathsf{E} = \mathsf{Plus}$ petite section de passage (eau)

Suite en page 34.

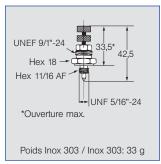
Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 136. 414. xx. A2 + 1Y = 136. 414. 1Y. A2

Atomiseurs pneumatiques, jet plat, principe de pression, mélange interne Série 136.4

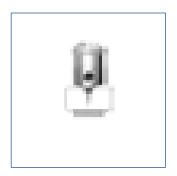
∢	Référence		E					Pressi	on liq	uide	b [bar]						Diamèti	re du je	t	
	Type	Mat	. Nr.	Ø [mm]		0.7			1.5			3.0			4.0					
Angle de jet		316L AL	Laiton 22 nickelé		p Air [bar]	v Eau [1/h]	V _n Air [m³/h]	p Air [bar]	V Eau [1/h]	V _n Air [m³/h]	p Air [bar]	Ý Eau [1/h]	√ _n Air [m³/h]	p Air [bar]	Ý Eau [1/h]	V _n Air [m³/h]	p Air [bar]	p Eau [bar]	B ₁	B ₂
		(-)			1.20	19.00	2.60	2.00	22.00	2.00	3.00	61.80	4.00	3.80	76.10	4.60	1.20	0.70	120	140
45°	136. 462. xx. A2	0	0	1.5	1.60 2.00 2.40 2.80 3.20 3.60 4.00	12.20 9.40 7.10 5.70 5.00 3.60 3.20	3.40 4.10 4.80 5.40 6.00 6.60 7.20	2.40 2.80 3.20 3.60 4.00 4.40 4.80	18.00 14.40 11.30 8.80 8.10 6.20 4.60	2.40 2.80 3.20 3.60 3.90 4.30 4.60	3.40 3.80 4.20 4.60 5.00 5.40 5.80	51.90 44.60 39.00 33.40 29.40 25.50 22.00	4.80 5.80 6.60 7.40 8.10 8.90 9.60	4.00 4.20 4.40 4.60 4.80 5.00 5.20	70.40 65.60 61.30 57.30 54.10 51.30 49.30	5.10 5.50 5.90 6.40 6.70 7.20 7.70	2.40 3.20 3.80 6.00	1.50 2.00 3.00 4.00	120 120 120 140 145	170 175 205 205
					4.40 - - -	2.20 - - -	7.80 - - -	5.20 5.60 5.80	3.20 1.60 0.80	4.90 5.30 5.40	6.00 - - -	20.60	9.90 - - -	5.40 5.60 5.80 6.00	46.50 43.70 41.30 39.00	8.20 8.60 8.90 9.30				
60°	136. 425. xx. A2	0	0	0.5	080 1.20 1.60 2.00 2.40 2.80 3.00	6.50 5.50 4.70 4.00 3.20 2.60 2.20	1.20 1.60 1.90 2.30 2.60 2.90 3.10	1.40 1.80 2.20 2.60 3.00 3.40 3.80 4.00 4.40 4.80 5.20 5.60 6.00	9.40 8.70 7.90 6.40 5.70 5.10 4.80 4.20 3.60 2.80 2.20 1.60	1.70 2.10 2.40 2.70 3.10 3.40 3.70 3.90 4.20 4.50 4.80 5.10 5.50	2.40 2.60 3.00 3.40 3.80 4.20 4.60 5.00 5.40 6.00	13.20 12.90 12.30 11.80 11.10 10.40 9.80 9.20 8.60 8.10 7.80	2.50 2.70 3.00 3.40 3.70 4.00 4.30 4.60 5.00 5.30 5.40	2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	16.10 15.50 15.00 14.50 13.90 13.40 12.80 12.20 11.70 11.20	2.50 2.90 3.20 3.50 3.80 4.10 4.50 4.80 5.10 5.40	1.20 2.20 3.00 3.40 5.60	0.70 1.50 2.00 3.00 4.00	155 165 170 200 200	195 255 265 330 330
	136. 452. xx. A2	0	0	1.5	1.00 1.40 1.80 2.20 2.60 2.80	18.80 8.60 7.40 4.10 1.00 0.10	3.90 5.70 7.00 8.40 9.80 10.30	1.80 2.00 2.20 2.40 2.60 2.80	31.00 25.40 20.10 15.50 12.40 10.40	5.30 6.30 7.20 8.00 8.90 9.60	3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00	50.10 39.50 31.30 24.00 17.70 13.40 10.60 8.60	7.70 9.40 11.20 12.90 14.50 16.00 17.50 18.80	3.80 4.20 4.60 5.00 5.40 5.80 6.00	70.70 58.60 48.60 41.20 33.60 27.50 24.40	8.20 9.60 11.20 13.10 14.80 16.40 17.20	1.00 1.80 2.60 3.60 5.00	0.70 1.50 2.00 3.00 4.00	130 150 155 175 180	185 240 245 280 285
80°	136. 433. xx. A2	0	0	0.4	1.00 1.20 1.40 1.60 -	11.60 8.10 5.30 3.70 - -	2.00 2.40 2.80 3.20 - -	1.80 2.00 2.20 2.40 2.60 2.80 3.00	18.30 15.30 12.20 9.80 7.60 5.90 4.40	2.80 3.20 3.60 4.00 4.30 4.70 5.00	3.00 3.40 3.80 4.20 4.60 5.00 5.40	31.00 25.40 20.60 16.30 12.50 9.30 6.50	3.70 4.40 5.10 5.90 6.60 7.30 8.00	3.80 4.20 4.60 5.00 5.40 5.80 6.00	37.50 32.40 27.70 23.40 19.40 15.90 14.20	4.40 5.00 5.70 6.50 7.20 7.90 8.30	1.40 2.20 3.00 3.80 5.20	0.70 1.50 2.00 4.00 4.00	150 185 205 300 260	210 255 300 485 395

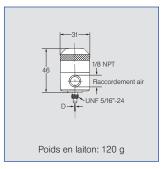
 $\mathsf{E} = \mathsf{Plus}$ petite section de passage (eau)

Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 136. 462. xx. A2 + 1Y = 136. 462. 1Y. A2


Accessoires pour atomiseurs pneumatiques

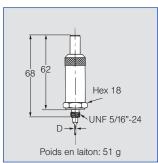
Série 136


Dispositif de réglage et pointeau obturateur :



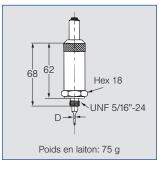
Référence	Référence Type Mat. Nr. 16				
Type	Mat. Nr.				
	Mat. Nr. 16 808 ×00				
015. 600					

Soupape à commande pneumatique : Pression d'ouverture 2.1 bar max., 180 cycles/min



Référence				
Туре	Mat	. Nr.	Pour les buses	Diamètre pointeau
	16	35		[mm]
	lnox 303	Laiton nickelé		
013. 601. xx. 10	0	0	136. xx1	2.1
013. 602. xx. 10	0	0	136. xx2	1.2
013. 604. xx. 10	0	0	136. xx4	0.6

Dispositif de nettoyage rapide :

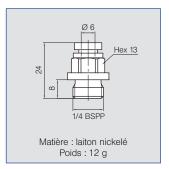


Référence				
Туре	Mat	. Nr.	Pour les buses	Diamètre pointeau
	16	35		[mm]
	lnox 303	Laiton nickelé		
013. 601. xx. 20	•	0	136. xx1	2.1
013. 602. xx. 20	0	0	136. xx2	1.2
013. 604. xx. 20	0	0	136. xx4	0.6

Dispositif de nettoyage rapide :

Référence				
Туре	Mat	. Nr.	Pour les buses	Diamètre pointeau
	16 £0£ xoul	Laiton nickelé		[mm]
013. 601. xx. 30	0	0	136. xx1	2.1
013. 602. xx. 30	0	0	136. xx2	1.2
013. 604. xx. 30	0	0	136. xx4	0.6

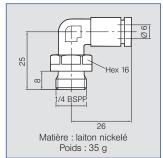
Exemple de Type + Matière Nr. (xx) = Réf. complète commande : 013. 601. xx. 10 + 16 = 013. 601. 16. 10



Accessoires pour atomiseurs pneumatiques

Série 136

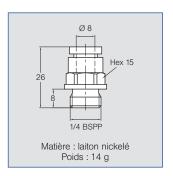
Raccord à visser droit pour tuyau de diamètre 6 mm



Référence
Pour toutes les buses
de la série 136

095. 016. 35. 11. 79. 0

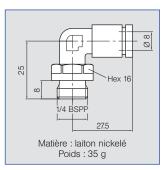
Raccord à visser à 90° pour tuyau de diamètre 6 mm



Référence
Pour toutes les buses
de la série 136

095. 016. 35. 13. 13. 0

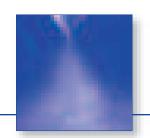
Raccord à visser droit pour tuyau de diamètre 8 mm



Référence
Pour toutes les buses de la série 136

095. 016. 35. 11. 80. 0

Raccord à visser à 90 °pour tuyau de diamètre 8 mm



Buses bifluides pour liquides visqueux

ViscoMist™ TM Série 176

Les buses de la série ViscoMist™ permettent une régulation indépendante de l'air d'atomisation et de l'air de contrôle du jet, ce qui procure à l'utilisateur une maîtrise totale de la taille des gouttes et de la forme du jet lors de la pulvérisation de liquides visqueux.

La buse ViscoMistTM est équipée en standard d'un pointeau assurant le nettoyage et la fonction d'ouverture et de fermeture. Ce dispositif est spécialement conçu pour activer et désactiver l'alimentation de liquide et simultanément éliminer le liquide de la buse, empêchant ainsi tout colmatage. Cette propriété est vitale lorsque des liquides visqueux sont utilisés sur des process en continu. La conception modulaire de la buse ViscoMist TM offre un maximum de flexibilité et permet de trouver une réponse précise aux exigences de pulvérisation.

Les chapeaux interchangeables et les différents débits permettent de répondre aux besoins de toutes les applications.

1 buse et 3 caractéristiques de pulvérisation

- Jet rectiligne

 Jet à cône plein

 Jet plat
- Régulation indépendante du liquide, de l'air d'atomisation et de l'air de contrôle du jet
- Circulation possible du fluide (corps de buse à 5 raccordements)

Mélange externe pour pulvérisation de liquides visqueux, comme par exemple dans les applications suivantes :

- Revêtement
- Humidification
- Lubrification
- Glaçage
- Désinfection

Options du chapeau Diamètre de 0.38 mm à 2.54 mm

Position de la soupape Normalement fermée, fermeture par manque d'air

Pression air de signal Mini 1.5 bar Maxi 3 bar

Nombre de cycles par minute

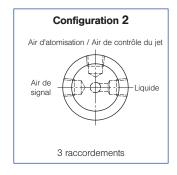
180 cycles par minute

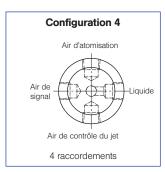
Matière

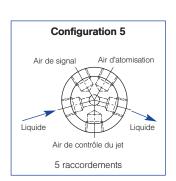
1Y (316L) 35 (Laiton chromé)

Raccordements

01 (1/8 " NPT (F)) 11 (1/8 " BSPP (F))



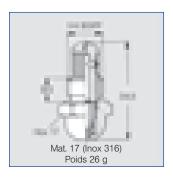

Gamme de débit

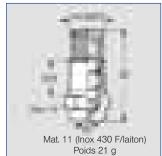

Eau: 7.8 à 307 l/h à 2 barAir: 7.5 à 28.4 m3/h à 2 bar

Plus d'information et références de buses sur demande

Diverses configurations de corps de buse

Buses de pulvérisation axiales à cône creux


Série 212



Pulvérisation à cône creux extrêmement fine, en brouillard

Applications: Désinfection, humidification de l'air, arrosage de germoirs, humidification de produits, humidification de textiles, pulvérisation d'huiles, absorption.

4	Réfé	erence				B Ø	E Ø			Diamètre du jet								
'	Type	Mat	. Nr.	Со	de	[mm]	[mm]							à 7 bar				
je		11	17															
de		430 F/	316	BSPP	BSPT					p [bar]			D— H				
Angle		Inox 4; Laiton	lnox 316	1/4 B	1/4 B			2.0										
60°	212. 004	-	0	AC	-	0.10	0.10	-	-	0.013	0.015	0.018	0.025	80				
	212. 014	-	0	AC	-	0.15	0.15	-	-	0.019	0.023	0.027	0.039	80				
	212. 054	-	0	AC	-	0.20	0.15	-	-	0.027	0.033	0.039	0.057	80				
80°	212. 085	0*	0**	-	СС	0.25	0.25	-	-	0.040	0.047	0.057	0.080	140				
	212. 125	0*	0**	AC	СС	0.35	0.25	-	0.048	0.062	0.073	0.088	0.124	140				
	212. 145	0	-	-	СС	0.40	0.30	-	0.063	0.082	0.097	0.116	0.164	140				
	212. 165	0	-	-	CC	0.45	0.30	-	0.080	0.103	0.122	0.146	0.206	140				
	212. 185	0	-	-	CC	0.50	0.35	-	0.101	0.130	0.154	0.184	0.260	140				
	212. 205	0	-	-	CC	0.60	0.35	0.107	0.131	0.168	0.199	0.238	0.336	140				
	212. 245	0	-	-	CC	0.70	0.45	0.166	0.202	0.261	0.310	0.370	0.522	140				
	212. 285	0*	0**	AC	CC	0.90	0.60	0.262	140									

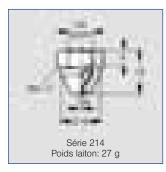
$$[\]label{eq:B} \begin{split} & = \text{Diamètre de perçage} \cdot E = \text{Plus petite section de passage} \\ ^*& \text{Uniquement disponible avec code CC} \\ ^{**}& \text{Uniquement disponible avec code AC} \end{split}$$

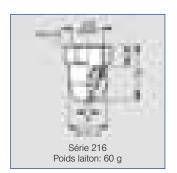
Exemple de	Туре	+	Matière Nr.	+	Code	=	Réf. complète
commande :	212. 004	+	17	+	AC	=	212. 004. 17. AC

Le filtre intégré permet d'éviter le colmatage de la buse et augmente ainsi sa durée de vie.

	Mati	ères	
Réf. Matière	Buse	Porte filtre	Filtre
11	1.4104	Laiton	Monel
17	1.4571	316 SS	316 SS

Buses de pulvérisation axiales à cône creux

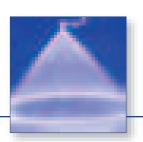

Séries 214 / 216



Pulvérisation à cône creux fine et uniforme

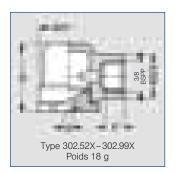
Applications: Dépoussiérage, pulvérisation sur filtres, séchage par pulvérisation, désinfection des mains.

\$	Référence)		G	B Ø	E Ø				V [l/min]]			Diamètre du jet
/	Type	Mat	t. Nr.		[mm]	[mm]								à 3 bar
Angle de jet		17 916 xoul	Laiton 08	BSPP						p [bar]				H =
<		드	ت	<u> </u>			0.5	1.0	2.0	3.0	5.0	10.0	20.0	250 mm
60°	214. 184	0	0	1/8"	0.50	0.50	-	-	0.08	0.10	0.13	0.18	0.25	200
80°	214. 245	0	0	1/8"	1.00	0.50	-	-	0.16	0.20	0.25	0.36	0.51	450
	214. 305	0	0	1/8"	1.80	0.50	-	0.23	0.32	0.39	0.51	0.72	1.01	450
60°	216. 324	0	0	3/8"	1.00	1.00	-	0.28	0.40	0.49	0.63	0.89	1.26	200
	216. 364	0	0	3/8"	1.40	1.40	-	0.45	0.63	0.77	1.00	1.41	1.99	200
	216. 404	0	0	3/8"	2.00	2.00	-	0.71	1.00	1.22	1.58	2.24	3.16	200
90°	216. 496	0	0	3/8"	3.00	2.00	-	1.20	1.70	2.08	2.69	3.80	5.38	500
	216. 566	0	0	3/8"	4.00	2.00	-	1.77	2.50	3.06	3.95	5.59	7.91	500
	216. 646	0	0	3/8"	3.50	2.00	2.00	2.83	4.00	4.90	6.32	8.94	12.65	500
	216. 686	0	0	3/8"	4.00	2.00	2.50	3.54	5.00	6.12	7.91	11.18	15.81	500
	216. 726	0	0	3/8"	5.00	2.00	3.15	4.45	6.30	7.72	9.96	14.09	19.92	500
	216. 776	0	0	3/8"	6.00	2.00	4.30	6.00	8.50	10.40	13.40	19.00	26.90	500


 $\mathsf{B} = \mathsf{Diamètre}$ de perçage $\, \cdot \, \mathsf{E} = \mathsf{Plus}$ petite section de passage

Exemple de	Type	+	Matière Nr.	=	Réf. complète
commande :	214. 184	+	17	=	214. 184. 17

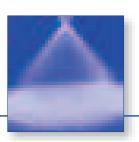
Buses de pulvérisation excentriques à cône creux Version en matière plastique Série 302



Pulvérisation à cône creux fine et uniforme. Buses exemptes d'hélices, donc colmatage impossible

Applications:
Dépoussiérage, pulvérisation
sur filtres, séchage par
pulvérisation, abattage de
mousse, pasteurisation.

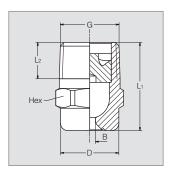
\$	Référer	nce			B Ø	E Ø				V [l/min]					re du jet
'	Type	١	Иat. N	r.	[mm]	اط [mm]									D bar
*		5E	51	53										学	- -
e je										p [bar]					<u></u>
Angle de jet		PVDF	PA	윤			0.5	1.0	2.0	[US gal./ min] à 40 psi	3.0	5.0	10.0	H = 250 mm	H = 500 mm
60°	302. 364	-	0	0	1.50	1.50	0.31	0.45	0.63	0,20	0.77	1.00	1.41	200	350
	302. 464	-	0	0	3.80	1.95	0.70	0.99	1.40	0,43	1.71	2.21	3.13	300	560
90°	302. 326	0	0	-	1.20	0.90	0.20	0.28	0.40	0.12	0.49	0.63	0.89	400	700
	302. 366	0	0	-	2.10	1.30	0.31	0.45	0.63	0.20	0.77	1.00	1.41	400	880
	302. 406	0	0	0	2.60	1.40	0.50	0.71	1.00	0.31	1.22	1.58	2.24	400	880
	302. 486	-	0	0	2.60	2.60	0.80 1.00	1.13 1.41	1.60	0.50	1.96	2.53	3.58 4.47	400 400	880
	302. 526 302. 566	-	0	0	5.00 5.00	2.00 2.40	1.25	1.41	2.00 2.50	0.62 0.78	2.45 3.06	3.16 3.95	5.59	400	880 880
	302. 606	-	0	0	5.00	3.20	1.57	2.23	3.15	0.78	3.86	4.98	7.04	450	950
	302. 686		0	_	7.50	3.40	2.50	3.45	5.00	1.55	6.12	7.91	11.18	500	1050
	302. 766		0	_	9.00	4.30	4.00	5.66	8.00	2.48	9.80	12.65	17.89	500	1050
	302. 846	-	0	0	11.00	5.20	6.25	8.84	12.50	3.88	15.31	19.67	27.95	550	1130
	302. 886	0	0	0	11.00	6.40	8.00	11.31	16.00	4.96	19.60	25.30	35.78	550	1130
	302. 966	_	0	-	11.00	8.60	12.50	17.68	25.00	7.75	30.62	39.53	55.90	550	1130
130°	302. 328	0	-	-	1.35	0.80	0.20	0.28	0.40	0.12	0.49	0.63	0.89	700	1380
	302. 368	0	0	-	1.85	1.10	0.31	0.45	0.63	0.20	0.77	1.00	1.41	700	1380
	302. 408	0	0	-	3.65	1.30	0.50	0.71	1.00	0.31	1.22	1.58	2.24	700	1380
	302. 488	-	0	0	5.20	1.60	0.80	1.13	1.60	0.50	1.96	2.53	3.58	700	1380
	302. 528	-	0	-	5.00	2.00	1.00	1.41	2.00	0.62	2.45	3.16	4.47	700	1380
	302. 568 302. 608	-	0	-	5.00 5.00	2.40 3.20	1.25 1.57	1.77 2.23	2.50 3.15	0.78 0.98	3.06 3.86	3.95 4.98	5.59 7.04	780 780	1520 1520
	302. 648	0	0	_	7.50	3.20	2.00	2.23	4.00	1.20	4.90	6.32	7.04 8.94	950	1850
	302. 688		0	_	7.50	3.40	2.50	3.54	5.00	1.55	6.12	7.91	11.18	950	1850
	302. 728		0	-	7.50	4.10	3.15	4.45	6.30	1.89	7.72	9.96	14.09	950	1850
	302. 768	_	0	_	9.00	4.30	4.00	5.66	8.00	2.48	9.80	12.65	17.89	950	1850
	302. 848	_	0	-	11.00	5.20	6.25	8.84	12.50	3.88	15.31	19.76	27.95	950	1850
	302. 888	-	0	0	11.00	6.40	8.00	11.31	16.00	4.96	19.60	25.30	35.78	950	1850
	302. 968	0	0	-	11.00	8.60	12.50	17.68	25.00	7.75	30.62	39.53	55.90	950	1850


 $\mathsf{B} = \mathsf{Diam\`{e}tre} \ \mathsf{de} \ \mathsf{perçage} \ \cdot \mathsf{E} = \mathsf{Plus} \ \mathsf{petite} \ \mathsf{section} \ \mathsf{de} \ \mathsf{passage}$

Exemple de	Туре	+	Matière Nr.	=	Réf. complète
commande :	302. 364	+	51	-	302. 364. 51

Buses de pulvérisation axiales à cône plein

Série 490



Pas de risque de bouchage. Angle de pulvérisation stable. Répartition du liquide uniforme.

Applications:

Nettoyage et lavage, pulvérisation sur des surfaces, nettoyage de bouteilles, de cuves, refroidissement de saucisses, abattage de mousse, génie chimique.

Les buses de la série 490 représentent une nouvelle génération de buses axiales à cône plein, développée grâce à la modélisation numérique. Dans la pratique, elles impressionnent par leurs nombreux avantages.

Code	G	Dimens	ions [mm]	. D	Hex	Poids 316 L
	G	L-1	L ₂	D	LIEX	310 L
CA	1/8" BSPT	18.0	6.5	10.0	11	13 g
CC	1/4" BSPT	22.0	10.0	13.0	14	16 g
CE	3/8" BSPT	24.5	10.0	16.0	17	28 a

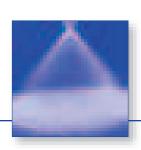
		R	éféren	ce			B Ø	E Ø			Ů	[l/mir	n]				nètre jet D
/	Type	Mat	. Nr.		Code		اط [mm]	[mm]									2 bar
4		30	1Y	Race	cordement											英	-
Angle de jet												p [bar]			4	<u> </u>
e d				BSPT	BSPT	3/8" BSPT							-				 H =
lgu		Laiton	316 L	1/8" E	1/4" E	/8" E								. 7.0		200	500
⋖		ت	က်	-	+	<i>г</i> у									10.0	mm	mm
60°	490. 404	0	0	CA	-	-	1.10	1.10							1.90	220	560
	490.444	0	0	CA	-	-	1.30	1.30	0.82	0.95	1.25	1.47	1.80	2.06	2.38	220	560
	490.484	0	0	CA	-	-	1.40	1.40	0.92	1.21	1.60	1.88	2.31	2.64	3.05	220	560
	490. 524	0	0	CA	-	-	1.60	1.60	1.15	1.52	2.00	2.35	2.89	3.30	3.81	220	560
	490. 564	0	0	CA	-	-	1.80	1.80	1.44	1.89	2.50	2.94	3.61	4.13	4.76	220	560
	490. 604	0	0	CA	CC	CE	2.10	2.10	1.81	2.39	3.15	3.70	4.54	5.20	6.00	220	560
	490. 644	0	0	-	CC	CE	2.30	2.30	2.30	3.03	4.00 5.00	4.70 5.88	5.77 7.21	6.60 8.25	7.61 9.52	220	560
	490. 684 490. 724	0	0	-	CC	CE CE	2.60 3.00	2.60	3.62	4.77	6.30	7.41	9.09	10.40	11.99	220 220	560 560
	490. 724	0	0	-	CC	CE	3.30	3.30	4.59	6.06	8.00	9.41	11.54	13.20	15.22	220	560
	490. 764	0	0			CE	3.70	3.70	5.74	7.58	10.00	11.76	14.43	16.51	19.04	220	560
				04				1.20	0.57	0.76	1.00	1.18	1.44	1.65	1.90	380	860
90°	490.406 490.446	0	0	CA CA	-	-	1.20 1.20	1.20	0.57	0.76	1.25	1.10	1.80	2.06	2.38	380	860
	490.486	0	0	CA		_	1.50	1.50	0.02	1.21	1.60	1.88	2.31	2.64	3.05	380	960
	490.526	0	0	CA			1.70	1.70	1.15	1.52	2.00	2.35	2.89	3.30	3.81	380	860
	490. 566	0	0	CA		_	1.90	1.90	1.44	1.89	2.50	3.61	2.94	4.13	4.76	380	860
	490, 606	0	0	CA		CE	2.10	2.10	1.81	2.39	3.15	4.54	3.70	5.20	6.00	380	860
	490, 646	0	0	-	CC	CE	2.40	2.40	2.30	3.03	4.00	5.77	4.70	6.60	7.61	390	960
	490. 686	O	O	_	CC	CE	2.70	2.70	2.87	3.79	5.00	7.21	5.88	8.25	9.52	390	960
	490. 726	0	0	-	CC	CE	3.20	2.80	3.62	4.77	6.30	9.09	7.41	10.40	11.99	390	960
	490. 746	0	0	-	-	CE	3.20	3.20	4.08	5.38	7.10	10.24	8.35	11.72	13.52	390	960
	490. 766	0	0	-	-	CE	3.40	3.40	4.59	6.06	8.00	11.54	9.41	13.20	15.22	390	960
	490. 806	0	0	-	CE 3.9				5.74	7.58	10.00	14.43	11.76	16.51	19.04	390	960
	490. 846	0	0	-	-	CE	4.70	4.00	7.18	9.47	12.50	18.03	14.70	20.63	23.80	390	960

 $B = diamètre de perçage \cdot E = diamètre de passage minimum$

Suite en page 42.

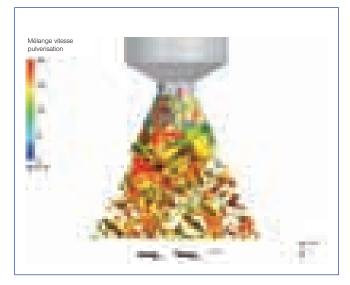
+ Matière Nr. + Code = Référence complète Exemple de Type commande: 490.404 + 1Y + CA = 490. 404. 1Y. CA

Autres dimensions et matières disponibles sur demande.



Buses de pulvérisation axiales à cône plein

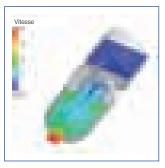
Série 490


\$		R	éféren	ce			B Ø	E Ø			Ý	/ [l/mir	1]			Diamètre du jet D	
,	Туре	Mat	. Nr.		Code		[mm]	[mm]								à p=2bar	
e jet		30	1Y		accordeme							p [bar]]				Ţ
Angle de		Laiton	316 L	1/8" BSPT	1/4" BSPT	3/8" BSPT			0.5 1.0 2.0 3.0 5.0 7.0 10.0					10.0	H = 200 mm	H = 500 mm	
120°	490.368	0	0	CA	-	0.80	0.60	0.36	0.50	0.63	0.74	0.91	1.04	1.20	680	1220	
120	490.448	0	0	CA					0.82	0.95	1.25	1.47	1.80	2.06	2.38	680	1220
	490.488	0	0	CA	-	-	1.50	1.50	0.92	1.21	1.60	1.88	2.31	2.64	3.05	680	1220
	490.528	0	0	CA	-	-	1.70	1.70	1.15	1.52	2.00	2.35	2.89	3.30	3.81	680	1220
	490. 568	0	0	CA	-	-	1.90	1.90	1.44	1.89	2.50	2.94	3.61	4.13	4.76	680	1220
	490. 608	0	0	CA	-	-	2.10	2.10	1.81	2.39	3.15	3.70	4.54	5.20	6.00	680	1220
	490. 648	0	0	-	CC	CE	2.40	2.40	2.30	3.03	4.00	4.70	5.77	6.60	7.61	680	1330
	490. 688	0	0	-	CC	CE	2.80	2.80	2.87	3.79	5.00	5.88	7.21	8.25	9.52	680	1330
	490. 728	0	0	-	CC	CE	3.20	2.80	3.62	4.77	6.30	7.41	9.09	10.40	11.99	680	1330
	490. 748	0	0			3.20	3.20	4.08	5.38	7.10	8.35	10.24	11.72	13.52	680	1330	
	490. 768	0	0				3.50	3.50	4.59	6.44	8.00	9.41	11.54	13.20	15.22	680	1330
	490. 808	0	0				3.90	3.90	5.74	7.58	10.00	11.76	14.43	16.51	19.04	680	1330
	490. 848	0	0	-	-	CE	4.70	4.00	7.18	9.47	12.50	14.70	18.03	20.63	23.80	680	1330

 $\mathsf{B} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{perçage} \cdot \mathsf{E} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{passage} \ \mathsf{minimum}$

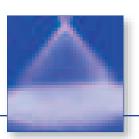
Autres dimensions et matières disponibles sur demande.

Exemple de Type + Matière Nr. + Code = Référence complète commande : 490.368 + 1Y + CA = 490.368.1Y. CA


Les buses de la série 490 représentent une nouvelle génération de buses axiales à cône plein, développée grâce à la modélisation numérique. Dans la pratique, elles impressionnent par leurs nombreux atouts.

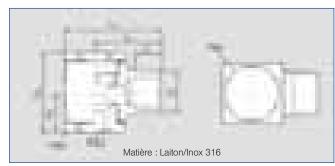
Simulation du jet en CFD (simulation numérique de l'écoulement des fluides)

Simulation de la pression statique dans une chambre vortex avec la CFD



Simulation de la courbe de vitesse dans une chambre vortex avec la CFD

Buses de pulvérisation tangentielles à cône plein Série 422



Alimentation tangentielle du liquide. Buses exemptes d'hélices, donc insensibles aux colmatages. Angle de jet stable. Pulvérisation régulière.

Applications:

Nettoyage et lavage, traitement par pulvérisation des surfaces, nettoyage de bouteilles et de fûts, refroidissement de saucisses, abattage de mousses, dégazage.

G	Dim e	ensions L ₂	[mm] L ₃	H ₁	H ₂	Hex	Poids Laiton
1/4 BSPT	28.0	20.0	10.0	8.0	20.5	12.0	43 g
3/8 BSPT	36.0	25.0	10.0	11.0	26.5	19.0	105 g
1/2 BSPT	48.5	33.5	13.0	20.0	38.5	27.0	250 g
3/4 BSPT	58.0	38.0	14.5	23.5	57.0	36.0	660 g
1 BSPT	76.0	48.5	17.0	27.5	66.0	41.0	1.330 g

X		Ré	férenc	`e					В	Е				V [l/min	1			Diar	mètre		
≰	Turno		tNr.			Code			Ø	Ø				V [1/111111	J			du	jet D		
	Type								[mm]	[mm]								àp=1	-10 bar		
<u>je</u>		30	17 ¹⁾		Raco	corder	ment											<u> </u>	<u> </u>		
de je			Inox 316/316L											p [bar]				<i></i>	<u>†</u>		
Ö			E/9	BSPT	BSPT	BSPT	BSPT	_											, '		
Angle		Laiton	χ ω	BB	BS	BS		BSPT						[US gal./ min] at				H = 200	H = 500		
A		Lai	일	1/4	3/8	1/2	3/4	<u>–</u>			0.5	1.0	2.0	40 psi	3.0	5.0	10.0	mm	mm		
60°	422. 644	0	0	-	CE	-	-	-	3.00	3.00	2.00	2.83	225	510							
90°	422, 406	0	0	СС	_	_	_	_	1.50	1.45	0.50	380	860								
90	422. 486	-		CC	_	_	_	_	1.90	1.80	0.80	0.71 1.13	380	860							
	422. 566	0	0	СС	-	-	-	-	2.30	2.20	1.25										
	422. 606	0	0	-	CE	-	-	-	2.60	2.50	1.57										
	422. 646	0	0	-	CE	-	-	-	3.00	2.90	2.00	2.83	4.00	1.24	4.90	6.32	8.94	390	960		
	422. 726	0	-	-	CE	-	-	-	3.70	3.60	3.15	4.45	6.30	1.95	7.72	9.96	14.09	390	960		
	422. 766	-	0	-	CE	-	-	-	4.15	4.10	4.00	5.66	8.00	2.48	9.80	12.65	17.89	390	960		
	422. 806	0	-	-	CE	-	-	-	4.65	4.60	5.00	7.07	10.00	3.10	12.25	15.81	22.36	390	960		
	422. 846	0	0	-	CE	-	-	-	5.20	5.10	6.25	8.84	12.50	3.88	15.31	19.76	27.95	390	960		
	422. 886	0	0	-	CE	-	-	-	5.80	5.70	8.00	11.31	16.00	4.96	19.60	25.30	35.78	390	960		
	422. 966	-	0	-	-	CG	-	-	8.00	8.00	12.50	17.68	25.00	7.75	30.62	39.53	55.90	390	960		
120°	422. 488	0	-	CC	-	-	-	-	1.90	1.80	0.80	1.13	1.60	0.50	1.96	2.53	3.58	680	1220		
	422. 568	0	0	CC	-	-	-	-	2.30	2.20	1.25	1.77	2.50	0.78	3.06	3.95	5.59	680	1220		
	422. 608	0	-	-	CE	-	-	-	2.60	2.50	1.57	2.23	3.15	0.98	3.86	4.98	7.04	680	1600		
	422. 728	0	0	-	CE	-	-	-	3.70	3.60	3.15	4.45	6.30	1.95	7.72	9.96	14.09	680	1600		
	422. 808	-	0	-	CE	-	-	-	4.65	4.60	5.00	7.07	10.00	3.10	12.25	15.81	22.36	680	1600		
	422. 848 422. 888	0	0	-	CE	-	-	-	5.20 5.80	5.10	6.25 8.00	8.84 11.31	12.50 16.00	3.88 4.96	15.31 19.60	19.76 25.30	27.95 35.78	680 680	1600 1600		
	422. 888 422. 928	0	0	-	CE	- CG	_	-	7.30	7.30	10.00	14.14	20.00	6.20	24.49	31.62	44.72	680	1600		
	422. 926	-	0	-		CG			8.00	8.00	12.50	17.68	25.00	7.75	30.62	39.53	55.90	680	1600		
	423, 008	-	0	-		CG		_	8.70	8.70	15.75	22.27	31.50	9.77	38.88	49.81	70.44	680	1600		
	423.128	_			_	-	СК	_	12.70	12.30	31.50	44.55	63.00	19.54	77.16	99.61	140.87	680	1600		
	423.208	_		_	_	_	-	СМ	19.00	16.00	50.00	70.71	100.00	31.00	122.47	158.11	223.61	680	1600		
								J	70.00	. 0.00	20.00					700					

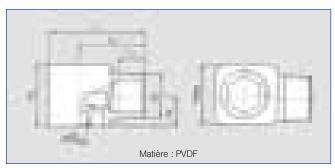
¹⁾ Nous nous réservons le droit de livrer de l'inox 316 ou 316 L à la place de la matière Nr. 17

 $\mathsf{B} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{perçage} \cdot \mathsf{E} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{passage} \ \mathsf{minimum}$


Exemple de Type + Material-no. + Code = Référence complète commande: 422.644 + 30 + CE = 422. 644. 30. CE

Pour la version en matière plastique, merci de voir en page suivante.

Buses de pulvérisation tangentielles à cône plein version en matière plastique Séries 422/423



Alimentation tangentielle du liquide. Buses exemptes d'hélices, pas de colmatages. Angle de jet stable. Pulvérisation régulière.

Applications:

Nettoyage et lavage, traitement par pulvérisation des surfaces, nettoyage de bouteilles et de fûts, refroidissement de saucisses, abattage de mousses. Dégazage, pasteurisation.

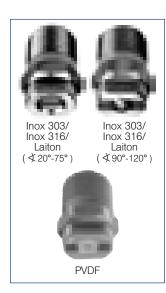
	Dime	ensions	[mm]				Poids PVDF
G	L ₁	L ₂	L ₃	H ₁	H ₂	Hex	PVDF
1/4 BSPT	28.0	20.0	9.8	8.0	16.0	16.0	7 g
3/8 BSPT	36.0	25.0	10.1	11.2	23.0	22.0	16 g
1/2 BSPT	49.5	33.5	13.2	19.2	38.0	32.0	40 g
3/4 BSPT	58.5	38.5	18.5	24.5	50.0	41.0	50 g

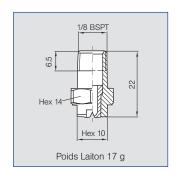
X	R	Référer	nce				В	Е				V [l/min	1			Diar	nètre
∢		Mat.		Co	ala		Ø	Ø				v [1/111111]	I			du	jet D
	Type	Nr.		Co	ae		[mm]	[mm]								à p = 1	-10 bar
<u>je</u>		5E	R	laccor	demer	nt											-
de jo												p [bar]				_	<u> </u>
e d			BSPT	BSPT	BSPT	BSPT						[US gal./	I				→ H=
Angle		PVDF	4 B	8 B	1/2 B						200	500					
₹		ď	1/4	3/8	1/	3/4			0.5	1.0	2.0	40 psi	3.0	5.0	10.0	mm	mm
60°	422. 724	0	-	CE	-	-	3.60	3.60	3.15	4.45	6.30	1.95	7.72	9.96	14.09	225	510
90°	422. 406	0	СС	-	-	-	1.50	1.45	0.50	0.71	1.00	0.31	1.22	1.58	2.24	380	860
	422. 566	0	CC	-	-	-	2.30	2.20	1.25	1.77	2.50	0.78	3.06	3.95	5.59	380	860
	422. 606	0	-	CE	-	-	2.60	2.50	1.57	2.23	3.15	0.98	3.86	4.98	7.04	380	860
	422. 646	0	-	CE	-	-	3.00	2.90	2.00	2.83	4.00	1.24	4.90	6.32	8.94	390	960
	422. 726	0	-	CE	-	-	3.70	3.60	3.15	4.45	6.30	1.95	7.72	9.96	14.09	390	960
	422. 806	0	-	CE	-	-	4.65	4.60	5.00	7.07	10.00	3.10	12.25	15.81	22.36	390	960
	422. 846	0	-	CE	-	-	5.20	5.10	6.25	8.84	12.50	3.88	15.31	19.76	27.95	390	960
	422. 886	0	-	CE	-	-	5.80	5.70	8.00	11.31	16.00	4.96	19.60	25.30	35.78	390	960
	422. 926	0	-	-	CG	-	7.30	7.30	10.00	14.14	20.00	6.20	24.49	31.62	44.72	390	960
	422. 966	0	-	-	CG	-	8.00	8.00	12.50	17.68	25.00	7.75	30.62	39.53	55.90	390	960
	423. 006	0	-	-	CG	-	8.70	8.70	15.75	22.27	31.50	9.77	38.58	49.81	70.44	390	960
	423. 126	0	-	-		CK	12.00	12.00	31.50	44.55	63.00	19.54	77.16	99.61	140.87	390	960
120°	422. 408	0	CC	-	-	-	1.50	1.45	0.50	0.71	1.00	0.31	1.22	1.58	2.24	680	1220
	422. 448	0	СС	-	-	-	1.65	1.60	0.62	0.88	1.25	0.39	1.53	1.98	2.80	680	1220
	422. 488	0	СС	-	-	-	1.90	1.80	0.80	1.13	1.60	0.50	1.96	2.53	3.58	680	1220
	422. 568	0	СС	-	-	-	2.30	2.20	1.25	1.77	2.50	0.78	3.06	3.95	5.59	680	1220
	422. 728	0	-	CE	-	-	3.70	3.60	3.15	4.45	6.30	1.95	7.72	9.96	14.09	680	1600
	422. 888	0	-	CE	-	-	5.80	5.70	8.00	11.31	16.00	4.96	19.60	25.30	35.78	680	1600
	422. 968	0	-	-	CG	-	8.00	8.00	12.50	17.68	25.00	7.75	30.62	39.53	55.90	680	1600
	423. 008	0	-	-	CG	-	8.70	8.70	15.75	22.27	31.50	9.77	38.58	49.81	70.44	680	1600
	423. 128	0	-	-	-	СК	12.70	12.30	31.50	44.55	63.00	19.54	77.16	99.61	140.87	680	1600

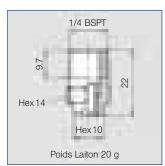
 $\mathsf{B} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{perçage} \cdot \mathsf{E} = \mathsf{diamètre} \ \mathsf{de} \ \mathsf{passage} \ \mathsf{minimum}$

Exemple de Type + Material-no. + Code = Référence complète commande : 422. 724 + 5E + CE = 422. 724. 5E. CE

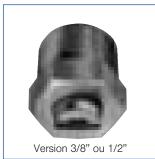
Buses à jet plat

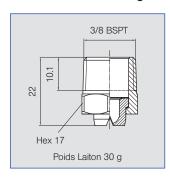

Séries 632 / 633

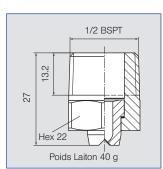



Type standard avec filetage conique, donc étanchéité assurée. Angle de jet stable. Répartition uniforme et parabolique du liquide. La répartition totale du liquide s'avère être extrêmement uniforme avec ces buses montées en ligne.

Applications:


Nettoyage (par ex. surfaces, filtres, convoyeurs), laveurs de cribles, lubrification, revêtement.





Version avec courte longueur sur demande.

X			Ré	férenc	е					A Ø	E Ø			Ń	/ [l/min	1]				ır de jet
'	Туре		Matiè	re Nr.			Co	de		اط [mm]	[mm]								à p =	2 bar
Angle de jet		16 808 xonl	17 T 918/918 xoul	Laiton 08	PVDF PVDF	1/8 BSPT	1/4 BSPT	3/8 BSPT	1/2 BSPT			0.5	1.0	10.0	H= 250 mm	H= 500 mm				
			_	_				e,	,					2.0	3.0	5.0	7.0			
20°	632. 301	0	0	0	0	CA	CC	-	-	0.70	0.60	0.16*	0.23*	0.32	0.39	0.51	0.60	0.72	65	120
	632. 361	0	0	0	0	CA	CC	-	-	1.00	0.80	0.31*	0.44*	0.63	0.77	1.00	1.18	1.40	70	130
	632. 441	0	0	0	0	CA	CC	-	-	1.35	1.10	0.62*	0.88	1.25	1.53	1.98	2.34	2.80	75	145
	632. 481	0	0	0	0	CA	CC	-	-	1.50	1.20	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	75	150
30°	632. 302	0	0	0	0	CA	СС	-	-	0.60	0.50	0.16*	0.23*	0.32	0.39	0.51	0.60	0.72	120	235
	632. 362	0	0	0	0	CA	CC	-	-	1.00	0.70	0.31*	0.44*	0.63	0.77	1.00	1.18	1.40	120	235
	632. 402	0	0	0	0	CA	CC	-	-	1.20	0.90	0.50*	0.71	1.00	1.23	1.58	1.87	2.24	120	235
	632. 482	0	0	0	0	CA	CC	-	-	1.50	1.10	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	120	235
	632. 562	0	0	0	0	CA	CC	-	-	2.00	1.50	1.25	1.77	2.50	3.06	3.95	4.68	5.59	120	235
	632. 642	0	0	0	-	-	CC	-	-	2.50	1.80	2.00	2.83	4.00	4.90	6.33	7.48	8.94	120	240
	632. 722	0	0	0	-	-	CC	-	-	3.00	2.40	3.15	4.46	6.30	7.72	9.96	11.79	14.09	125	240
	632. 762	0	0	0	_	-	СС	-	-	3.50	2.70	4.00	5.66	8.00	9.80	12.65	14.97	17.89	125	240
	632. 802	0	0	0	_	-	СС	-	-	4.00	3.10	5.00	7.07	10.00	12.25	15.81	18.71	22.36	130	250

¹⁾ Nous nous réservons le droit de livrer de l'inox 316 ou 316 L à la place de la matière Nr. 17

Sous réserve de modifications techniques.

Voir suite en page 46.

+ Matière Nr. + Code = Réf. complète Exemple de Type commande: 632.301 + CA = 632.301.16.CC

A = Diamètre de perçage équivalent \cdot E = Plus petite section de passage *Forme de jet différente

Buses à jet plat

Séries 632/633

			Ré	férenc	е					A	E			V	/ [l/mir	1]				ır de jet
	Туре		Matiè	re Nr.			Co	de		Ø [mm]	Ø [mm]								1	B : 2 bar
Angle de jet		16 808 xoul	17 T 918/316 X 1000	Laiton 08	5E JOAN	1/8 BSPT	1/4 BSPT	3/8 BSPT	1/2 BSPT			0.5	. 1.0	. 2.0	p [bar]	5.0	. 7.0	. 10.0	H= 250 mm	H= 500 mm
	620, 202									0.70	0.50	0.16*	0.23*	0.32		0.51	0.60		150	270
45°	632. 303 632. 363	0	0	0	-	CA	CC		-	0.70 1.00	0.60	0.16"	0.23"	0.32	0.39	1.00	1.18	0.72 1.40	150	280
	632, 403	0		0	0	CA	CC	_	_	1.20	0.90	0.50*	0.71	1.00	1.23	1.58	1.87	2.24	175	320
	632. 483	0	0	0	0	CA	СС	-	-	1.50	1.10	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	180	340
	632. 563	0	0	0	0	CA	СС	-	-	2.00	1.40	1.25	1.77	2.50	3.06	3.95	4.68	5.59	185	355
	632. 643	0	0	0	0	CA	СС		-	2.50	1.80	2.00	2.83	4.00	4.90	6.33	7.48	8.94	195	370
	632. 673	0	0	0	-	-	CC	CE	-	2.70	2.00	2.83	3.36	4.75	5.82	7.51	8.89	10.62	200	375
	632. 723	0	0	0	-	-	CC	CE	-	3.00	2.40	3.15	4.46	6.30	7.72	9.96	11.79	14.09	200	375
	632. 763	0	0	0	-	-	CC	CE	-	3.50	2.60	4.00	5.66	8.00	9.80	12.65	14.97	17.89	200	380
	632. 803	0	0	0	-	-	CC	CE	CG	4.00	3.00	5.00	7.07	10.00	12.25	15.81	18.71	22.36	205	385
	632. 843	0	O***	0	-	-	CC	-	CG	4.50	3.40	6.25	8.84	12.50	15.31	19.76	23.39	27.95	205	385
	632. 883	0	0	0	-	-	-	-	CG	5.00	3.80	8.00	11.31	16.00	19.60 24.50	25.30	29.93	35.78	220	440
	632. 923 632. 963	0	0	0	-	-	-	-	CG	5.50 6.00	4.20 4.40	10.00 12.50	17.68	25.00	30.62	31.62 39.53	37.42 46.77	44.72 55.90	220	440
		0	0	0																
60°	632. 304	0	0	0	0	CA	CC	-	-	0.70	0.40	0.16*	0.23*	0.32	0.39	0.51	0.60	0.72	215	425
	632. 334	0	0	0	0	CA	CC	-	-	0.90	0.50	0.22* 0.31*	0.32* 0.44*	0.45	0.55	0.71	0.84	1.01	220	440
	632. 364	0	0	0	0	CA	CC	_	-	1.00 1.20	0.60	0.50*	0.44	0.63 1.00	0.77 1.23	1.00 1.58	1.18 1.87	1.40 2.24	245	460 485
	632. 404 632. 444	0	0	0	0	CA	CC	-		1.35	0.80	0.50	0.71	1.25	1.53	1.98	2.34	2.80	255	495
	632, 484	0	0	0	0	CA	CC			1.50	1.00	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	260	510
	632, 514	0	0	0	0	CA	CC			1.65	1.10	0.95*	1.34	1.90	2.33	3.00	3.56	4.25	270	520
	632, 564	0		0	0	CA	CC	_	_	2.00	1.30	1.25	1.77	2.50	3.06	3.95	4.68	5.59	280	535
	632. 604				0	CA	СС	_	_	2.20	1.50	1.58	2.23	3.15	3.86	4.98	5.89	7.04	290	550
	632. 644	0	0	0	O**	-	СС	CE	-	2.50	1.60	2.00	2.83	4.00	4.90	6.33	7.48	8.94	295	565
	632. 674	0	0	0	O**	-	CC	CE	-	2.70	1.80	2.38	3.36	4.75	5.82	7.51	8.89	10.62	300	575
	632. 724	0	0	0	O**	-	CC	CE	-	3.00	2.10	3.15	4.46	6.30	7.72	9.96	11.79	14.09	305	590
	632. 764	0	0	0	-	-	CC	CE	-	3.50	2.30	4.00	5.66	8.00	9.80	12.65	14.97	17.89	310	595
	632. 804	0	O***	0	O**	-	CC	-	CG	4.00	2.60	5.00	7.07	10.00	12.25	15.81	18.71	22.36	310	595
	632. 844	0	O***	0	O**	-	CC	-	CG	4.50	3.00	6.25	8.84	12.50	15.31	19.76	23.39	27.95	310	590
	632. 884	0	O***	0	O**	-	CC	-	CG	5.00	3.40	8.00	11.31	16.00	19.60	25.30	29.93	35.78	300	570
	632. 924	0	0	0	-	-	-	-	CG	5.50	4.10	10.00	14.14	20.00	24.50	31.62	37.42	44.72	330	630
	632. 964 633. 004	0	0	0	-		-		CG	6.00 7.00	4.20	12.50 15.75	17.68	25.00 31.50	30.62 38.57	39.53 49.80	46.77 58.92	55.90 70.43	330	630 630
	633, 044	0	0	-	-				CG	8.00	5.50	20.00	28.28	40.00	48.99	63.25	74.83	89.44	340	640
	633. 084	0	0	0	-				CG	9.00	6.80	25.00	35.36	50.00	61.24	79.06	93.54	111.80	340	640
75°	632, 145		-			CA	CC		-	0.20	0.12		0.04*	0.05	0.06	0.08	0.09	0.11	280	550
15	632, 145	0		0		CA	CC			0.20	0.12	-	0.04	0.05	0.08	0.08	0.09	0.11	290	560
	632, 165	0		0		CA	CC			0.20	0.08	_	0.05	0.07	0.08	0.10	0.12	0.15	300	575
	632, 215	0		0	-	CA	CC		-	0.40	0.13	_	0.08*	0.00	0.10	0.13	0.13	0.10	300	580
	632, 245	0	_	0		CA	CC	_	_	0.50	0.30	_	0.12*	0.16	0.20	0.26	0.30	0.26	310	585
	632. 275	0	_	0	_	CA	CC	-	_	0.60	0.30	0.11*	0.16*	0.22	0.27	0.35	0.41	0.49	310	590
																2.50				

¹⁾ Nous nous réservons le droit de livrer de l'inox 316 ou 316 L à la place de la matière Nr. 17

A = Diamètre de perçage équivalent · E = Plus petite section de passage *Forme de jet différente

**Uniquement disponible avec code CC.

****Uniquement disponible avec code CG.

Sous réserve de modifications techniques

Sous réserve de modifications techniques.

Voir suite en page 47.

Exemple de Type + Matière Nr. + Code = Réf. complète commande: 632.303. + 16 + CA = 632. 303. 16. CA

Buses à jet plat

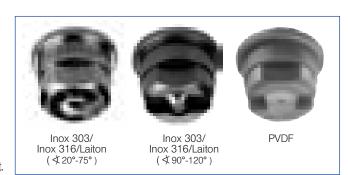
Séries 632/633

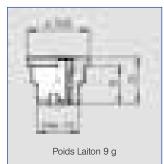
\$			Rét	érenc	е					A Ø	E Ø			v	/ [l/mir	1]				ır de jet B
/-	Туре		Matiè	re Nr.			Co	de		اط [mm]	[mm]								1	2 bar
Angle de jet		16 sos xoul	17 1) 10 10 10 10 10 10 10 10 10 10 10 10 10	Taiton	PVDF HOV9	1/8 BSPT	1/4 BSPT	3/8 BSPT	1/2 BSPT			0.5	1.0	2.0	p [bar]	5.0	7.0	10.0	H= 250 mm	H= 500 mm
90°	632, 216	0	-	0	_	CA	СС		_	0.40	0.20	_	0.08*	0.11	0.14	0.18	0.21	0.25	370	700
30	632. 276	0	_	0	_	CA	CC	_	_	0.60	0.30	0.11*	0.16*	0.22	0.27	0.35	0.41	0.49	375	720
	632. 306	0	0	0	0	CA	СС	-	-	0.70	0.40	0.16*	0.23*	0.32	0.39	0.51	0.60	0.72	380	740
	632. 336	0	0	0	0	CA	СС	-	-	0.90	0.50	0.22*	0.32*	0.45	0.55	0.71	0.84	1.01	415	800
	632. 366	0	0	0	0	CA	CC	-	-	1.00	0.50	0.31*	0.44*	0.63	0.77	1.00	1.18	1.41	420	810
	632. 406	0	0	0	0	CA	CC	-	-	1.20	0.70	0.50*	0.71	1.00	1.23	1.58	1.87	2.24	430	820
	632. 446	0	0	0	0	CA	CC	-	-	1.35	0.80	0.62*	0.88	1.25	1.53	1.98	2.34	2.80	435	830
	632. 486	0	0	0	0	CA	CC	-	-	1.50	0.80	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	440	835
	632. 516	0	0	0	0	CA	CC	-	-	1.65	0.90	0.95*	1.34	1.90	2.33	3.00	3.56	4.25	440	840
	632. 566	0	0	0	0	CA	CC	-	-	2.00	1.10	1.25	1.77 2.23	2.50	3.06	3.95	4.68	5.59 7.04	445 450	850
	632. 606	0	0	0	O**	CA	CC	- CE	-	2.20 2.50	1.20 1.30	1.58 2.00	2.23	3.15 4.00	3.86 4.90	4.98 6.33	5.89 7.48	8.94	450	860 865
	632. 646 632. 676	0	0	0	O**	-	CC	CE		2.70	1.40	2.38	3.36	4.75	5.82	7.51	8.89	10.62	465	875
	632. 726	0		0	O**		CC	CE		3.00	1.70	3.15	4.46	6.30	7.72	9.96	11.79	14.09	470	885
	632, 766	0		0	O**		CC	CE		3.50	1.90	4.00	5.66	8.00	9.80	12.65	14.97	17.89	475	890
	632, 806	0	O***	0	O**	-	CC	-	CG	4.00	2.40	5.00	7.07	10.00	12.25	15.81	18.71	22.36	480	900
	632. 846	0	O***	0	O**	_	CC	_	CG	4.50	2.40	6.25	8.84	12.50	15.31	19.76	23.39	27.95	480	900
	632. 886	0	O***	0	O**	-	СС	-	CG	5.00	3.10	8.00	11.31	16.00	19.60	25.30	29.93	35.78	480	910
	632. 926	0	0	0	-	-	-	-	CG	5.50	3.60	10.00	14.14	20.00	24.50	31.62	37.42	44.72	525	1020
	632. 966	0	0	0	-	-	-	-	CG	6.00	3.90	12.50	17.68	25.00	30.62	39.53	46.77	55.90	525	1020
120°	632. 187	0	-	0	-	CA	СС	-	-	0.35	0.20	-	0.06*	0.08	0.10	0.13	0.15	0.18	630	1200
	632. 217	0	-	0	-	CA	CC	-	-	0.40	0.20	-	0.08*	0.11	0.14	0.18	0.21	0.25	640	1210
	632. 247	0	-	0	-	CA	CC	-	-	0.50	0.20	-	0.12*	0.16	0.20	0.26	0.30	0.36	650	1230
	632. 277	0	-	0	-	CA	CC	-	-	0.60	0.30	-	0.16*	0.22	0.27	0.35	0.41	0.49	660	1250
	632. 307	0	0	0	0	CA	CC	-	-	0.70	0.30	0.16*	0.23*	0.32	0.39	0.51	0.60	0.72	660	1250
	632. 337 632. 367	0	0	0	0	CA	CC	-	-	0.90 1.00	0.40	0.22* 0.31*	0.32*	0.45	0.55 0.77	0.71 1.00	0.84	1.01	670 670	1270 1270
	632. 367	0	0	0	0	CA	CC			1.20	0.60	0.50*	0.44	1.00	1.23	1.58	1.10	2.24	670	1270
	632, 447	0		0	0	CA	CC			1.35	0.60	0.62*	0.71	1.25	1.53	1.98	2.34	2.80	675	1270
	632. 487	0	0	0	0	CA	CC	-	-	1.50	0.60	0.80*	1.13	1.60	1.96	2.53	2.99	3.58	680	1275
	632. 517	0	0	0	O	CA	СС	-	-	1.65	0.90	0.95*	1.34	1.90	2.33	3.00	3.56	4.25	685	1280
	632. 567	0	0	0	0	CA	СС	-	-	2.00	0.90	1.25	1.77	2.50	3.06	3.95	4.68	5.59	690	1285
	632. 607	0	0	0	0	CA	СС	-	-	2.20	1.10	1.58	2.23	3.15	3.86	4.98	5.89	7.04	700	1300
	632. 647	0	0	0	-	-	СС	CE	-	2.50	1.30	2.00	2.83	4.00	4.90	6.33	7.48	8.94	700	1300
	632. 677	0	0	0	O**	-	СС	CE	-	2.70	1.40	2.38	3.36	4.75	5.82	7.51	8.89	10.62	720	1330
	632. 727	0	0	0	O**	-	CC	CE	-	3.00	1.60	3.15	4.46	6.30	7.72	9.96	11.79	14.09	740	1360
	632. 767	0	0	0	O**	-	CC	CE	-	3.50	1.70	4.00	5.66	8.00	9.80	12.65	14.97	17.89	760	1400
	632. 807	0	O***	0	-	-	CC	-	CG	4.00	2.00	5.00	7.07	10.00	12.25	15.81	18.71	22.36	790	1450
	632. 847	O***	O***	O***	O**	-	CC	-	CG	4.50	2.30	6.25	8.84	12.50	15.31	19.76	23.39	27.95	790	1450
	632. 887	0	0	0			-		CG	5.00 5.00	2.60 2.90	8.00 10.00	11.31	16.00	19.60 24.50	25.30	29.93 37.42	35.78	800	1460
	632. 927	0	0	0					CG	5.00	2.90	10.00	14.14	20.00	24.50	31.62	37.42	44.72	800	1460

¹⁾ Nous nous réservons le droit de livrer de l'inox 316 ou 316 L à la place **Uniquement disponible avec code CG.

Exemple de Type + Matière Nr. + Code = Réf. complète + CA = 632. 216. 16. CA commande: 632.216. + 16

Sous réserve de modifications techniques.




Buses à jet plat avec écrou-chapeau Série 652

Assemblage avec écrouchapeau. Changement de buses facile. Alignement simple du jet. Répartition uniforme et parabolique du liquide particulièrement lorsque les buses sont montées en ligne.

Applications: Nettoyage (par ex. surfaces, filtres, convoyeurs), laveurs de cribles, lubrification, revêtement.

Type	\$	Réfé	rence)			A Ø	E Ø				V [l/min]					r de jet 3
Part	,	Туре		Matiè	re Nr.												
20° 652, 301 0 0 0 0 0 0 0 0 0	de jet				30	5E										H	→ H H
652.861	Angle		lnox 30	lnox 31 316 L	Laiton	PVDF			0.5	1.0	2.0	min] à	3.0	5.0	10.0		
652.441	20°	652. 301	0	0	0	0	0.70	0.60	0.16*	0.23*	0.32	0.10	0.39	0.51	0.72	65	125
652.481																	
652. 302																	
652. 362	000																
652.402	30°																
652.482 ○ ○ ○ ○ ○ 1.50 1.10 0.80° 1.13 1.60 0.50 1.96 2.53 3.58 115 230 652.662 ○ ○ ○ ○ 2.00 1.50 1.25 1.77 2.50 0.78 3.06 3.95 5.59 115 230 652.642 ○ ○ ○ - 2.50 1.80 2.00 2.83 4.00 1.24 4.90 6.33 8.94 120 235 652.802 ○ ○ - 3.50 2.70 4.00 5.66 8.00 2.48 9.80 12.65 17.89 120 235 652.802 ○ ○ - 4.00 3.10 5.00 7.07 1.00 3.10 12.25 15.81 22.36 120 240 4.04 6.32 1.05 652.802 ○ ○ - 4.00 3.10 5.00 7.07 1.00 3.10 12.25 15.81 22.36 120 240 3.00 652.403 ○ ○ - 1.20 0.90 0.50° 0.71 1.00 0.31 1.23 1.58 2.24 185 340 652.403 ○ ○ - 1.20 0.90 0.50° 0.71 1.00 0.31 1.23 1.58 2.24 185 340 652.643 ○ ○ ○ 2.50 1.80 2.00 2.83 4.00 12.4 4.90 6.33 8.94 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.763 ○ ○ - 3.50 2.00 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.55 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.55 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.55 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.55 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ - 3.50 2.00 1.40 1.55 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.6444 ○ ○ - 3.50 2.00																	
652. 642 ○ ○ ○ - 2.50 1.80 2.00 2.83 4.00 1.24 4.90 6.33 8.94 120 230 652. 762 ○ ○ ○ - 3.50 2.70 4.00 5.66 8.00 1.95 7.72 9.96 14.09 120 235 652. 802 ○ ○ ○ - 4.00 3.10 5.00 7.07 10.00 3.10 12.25 15.81 22.36 120 240 45°						0		1.10	0.80*	1.13	1.60	0.50	1.96		3.58	115	230
652.722 ○ ○ ○ - 3.00 2.40 3.15 4.46 6.30 1.95 7.72 9.96 14.09 120 235 652.762 ○ ○ ○ - 4.00 3.10 5.00 7.07 10.00 3.10 12.25 15.81 22.36 120 240 45° 652.802 ○ ○ ○ - 4.00 3.10 5.00 7.07 10.00 3.10 12.25 15.81 22.36 120 240 45° 652.303 ○ ○ ○ ○ 1.00 0.60 0.31* 0.44* 0.63 0.20 0.77 1.00 1.40 185 340 652.403 ○ ○ ○ 1.20 0.90 0.50* 0.71 1.00 0.31 1.23 1.58 22.4 185 340 652.483 ○ ○ ○ ○ 1.20 0.90 0.50* 0.71 1.00 0.31 1.23 1.58 22.4 185 340 652.563 ○ ○ ○ ○ 2.00 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.643 ○ ○ ○ 2.50 1.80 2.00 2.83 4.00 1.24 4.90 6.33 8.94 185 345 652.723 ○ ○ ○ 3.50 2.60 4.00 5.66 8.00 2.48 9.80 12.25 15.81 22.36 195 366 652.803 ○ ○ ○ 1.00 0.40 0.16* 0.22* 0.32* 0.45 0.10 0.39 0.51 0.72 275 525 652.304 ○ ○ ○ 1.00 0.60 0.31* 0.44* 0.63 0.20 0.77 1.00 1.40 185 340 652.643 ○ ○ ○ 1.50 1.40 1.25 1.77 2.50 0.78 3.06 3.95 5.59 185 340 652.723 ○ ○ ○ 3.50 2.60 4.00 5.66 8.00 1.95 7.72 9.96 14.09 190 355 652.723 ○ ○ ○ 4.00 3.00 5.00 7.07 1.000 3.10 12.25 15.81 22.36 195 360 652.803 ○ ○ ○ 4.00 3.00 5.00 7.07 1.000 3.10 12.25 15.81 22.36 195 360 652.803 ○ ○ ○ 1.50 0.70 0.40 0.16* 0.23* 0.32 0.10 0.39 0.51 0.72 275 525 652.304 ○ ○ 0 1.20 0.80 0.50* 0.71 1.00 0.31 1.23 1.58 2.24 2.75 525 652.404 ○ ○ 0 0 1.20 0.80 0.50* 0.71 1.00 0.31 1.23 1.58 2.24 2.75 525 652.404 ○ 0 0 0 1.20 0.80 0.50* 0.71 1.00 0.31 1.23 1.58 2.24 2.75 525 652.404 ○ 0 0 0 1.50 0.80* 1.35 0.90 0.62* 0.88 12.50 0.39 1.53 1.88 2.24 2.75 525 652.404 ○ 0 0 0 1.50 0.80* 1.33 1.90 0.59 3.86 4.98 7.04 280 520 652.604 ○ 0 0 0 1.50 1.80 2.38 3.36 4.75 1.47 5.82 7.51 1.00 2.75 525 652.604 ○ 0 0 0 0 0.50 0.20* 1.80 2.38 3.36 4.75 1.47 5.82 7.51 1.00 2.75 520 652.604 ○ 0 0 0 0.50 0.20* 1.80 2.30 3.30 1.24 4.90 6.33 8.94 2.75 5.20 652.604 ○ 0 0 0 0.50 0.50 0.5			0	0	0	0						1					
652.762 ○ ○ ○						-											
45° 652.802																	
45° 652.303						_											
652.363	45°					_											
652. 403	45																
652. 563		652. 403				0	1.20	0.90	0.50*	0.71	1.00	0.31	1.23	1.58	2.24	185	340
652.643 ○ ○ ○ ○ ○ 2.50		652. 483	0	0	0	0						1					
652, 723												1					
652. 763																	
652. 803																	
60° 652.304						_											
652. 334	60°						0.70	0.40	0.16*			0.10				275	
652. 404 ○ ○ ○ 1.20 0.80 0.50* 0.71 1.00 0.31 1.23 1.58 2.24 275 525 652. 444 ○ ○ ○ 1.35 0.90 0.62* 0.88 1.25 0.39 1.53 1.98 2.80 280 530 652. 484 ○ ○ ○ 1.50 1.00 0.80* 1.13 1.60 0.50 1.96 2.53 3.58 280 530 652. 514 ○ ○ 1.65 1.10 0.95* 1.34 1.90 0.59 2.33 3.00 4.25 280 530 652. 564 ○ ○ 2.00 1.30 1.25 1.77 2.50 0.78 3.06 3.95 5.59 280 525 652. 604 ○ ○ 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 <						_											
652. 444 ○ ○ ○ 1.35 0.90 0.62* 0.88 1.25 0.39 1.53 1.98 2.80 280 530 652. 484 ○ ○ ○ 1.50 1.00 0.80* 1.13 1.60 0.50 1.96 2.53 3.58 280 530 652. 514 ○ ○ 1.65 1.10 0.95* 1.34 1.90 0.59 2.33 3.00 4.25 280 530 652. 564 ○ ○ 2.00 1.30 1.25 1.77 2.50 0.78 3.06 3.95 5.59 280 525 652. 604 ○ ○ 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 ○ ○ ○ 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 <t< th=""><th></th><th>652. 364</th><th></th><th></th><th>0</th><th>0</th><th>1.00</th><th>0.60</th><th>0.31*</th><th>0.44*</th><th>0.63</th><th>0.20</th><th>0.77</th><th>1.00</th><th>1.40</th><th>275</th><th>525</th></t<>		652. 364			0	0	1.00	0.60	0.31*	0.44*	0.63	0.20	0.77	1.00	1.40	275	525
652. 484 ○ ○ ○ 1.50 1.00 0.80* 1.13 1.60 0.50 1.96 2.53 3.58 280 530 652. 514 ○ ○ 1.65 1.10 0.95* 1.34 1.90 0.59 2.33 3.00 4.25 280 530 652. 564 ○ ○ 2.00 1.30 1.25 1.77 2.50 0.78 3.06 3.95 5.59 280 525 652. 604 ○ ○ 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 ○ ○ ○ 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 ○ ○ ○ 2.70 1.80 2.38 3.36 4.75 1.47 5.82 7.51 10.62 275 520 652. 724 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th></t<>												1					
652. 514 0 0 1.65 1.10 0.95* 1.34 1.90 0.59 2.33 3.00 4.25 280 530 652. 564 0 0 2.00 1.30 1.25 1.77 2.50 0.78 3.06 3.95 5.59 280 525 652. 604 0 0 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 0 0 0 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 0 0 2.70 1.80 2.38 3.36 4.75 1.47 5.82 7.51 10.62 275 520 652. 724 0 0 3.00 2.10 3.15 4.46 6.30 1.95 7.72 9.96 14.09 275 520 652. 764 0 0 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th></td<>												1					
652. 564 O O 2.00 1.30 1.25 1.77 2.50 0.78 3.06 3.95 5.59 280 525 652. 604 O O 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 O O 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 O O 2.70 1.80 2.38 3.36 4.75 1.47 5.82 7.51 10.62 275 520 652. 724 O O 3.00 2.10 3.15 4.46 6.30 1.95 7.72 9.96 14.09 275 520 652. 764 O O 3.50 2.30 4.00 5.66 8.00 2.48 9.80 12.65 17.89 270 515 652. 804 O O 4.00																	
652. 604 O O 2.20 1.50 1.58 2.23 3.15 0.98 3.86 4.98 7.04 280 520 652. 644 O O 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 O O 2.70 1.80 2.38 3.36 4.75 1.47 5.82 7.51 10.62 275 520 652. 724 O O 3.00 2.10 3.15 4.46 6.30 1.95 7.72 9.96 14.09 275 520 652. 764 O O 3.50 2.30 4.00 5.66 8.00 2.48 9.80 12.65 17.89 270 515 652. 804 O O 4.00 2.60 5.00 7.07 10.00 3.10 12.25 15.81 22.36 270 510 652. 844 O - -																	
652. 644 O O O 2.50 1.60 2.00 2.83 4.00 1.24 4.90 6.33 8.94 275 520 652. 674 O O 2.70 1.80 2.38 3.36 4.75 1.47 5.82 7.51 10.62 275 520 652. 724 O O 3.00 2.10 3.15 4.46 6.30 1.95 7.72 9.96 14.09 275 520 652. 764 O O - 3.50 2.30 4.00 5.66 8.00 2.48 9.80 12.65 17.89 270 515 652. 804 O O 4.00 2.60 5.00 7.07 10.00 3.10 12.25 15.81 22.36 270 510 652. 844 O - - 0 4.50 3.00 6.25 8.84 12.50 3.88 15.31 19.76 27.95 270 510																	
652. 724 O O O 3.00 2.10 3.15 4.46 6.30 1.95 7.72 9.96 14.09 275 520 652. 764 O O - 3.50 2.30 4.00 5.66 8.00 2.48 9.80 12.65 17.89 270 515 652. 804 O O 0 4.00 2.60 5.00 7.07 10.00 3.10 12.25 15.81 22.36 270 510 652. 844 O - - 0 4.50 3.00 6.25 8.84 12.50 3.88 15.31 19.76 27.95 270 510		652. 644				0	2.50	1.60	2.00			1.24	4.90	6.33	8.94		
652. 764 O O - 3.50 2.30 4.00 5.66 8.00 2.48 9.80 12.65 17.89 270 515 652. 804 O O 0 4.00 2.60 5.00 7.07 10.00 3.10 12.25 15.81 22.36 270 510 652. 844 O - - 0 4.50 3.00 6.25 8.84 12.50 3.88 15.31 19.76 27.95 270 510												1					
652. 804 O O O 4.00 2.60 5.00 7.07 10.00 3.10 12.25 15.81 22.36 270 510 652. 844 O - - O 4.50 3.00 6.25 8.84 12.50 3.88 15.31 19.76 27.95 270 510																-	
652. 844 O O 4.50 3.00 6.25 8.84 12.50 3.88 15.31 19.76 27.95 270 510																	
					_												
				-	0	-											

 $^{1)}$ Nous nous réservons le droit de livrer de l'inox 316 ou 316 L à la place de la matière Nr. 17 A = Diamètre de perçage équivalent \cdot E = Plus petite section de passage \cdot *Forme de jet différente.

Voir suite en page 49.

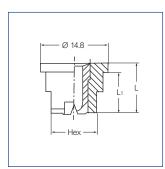
Buses à jet plat avec écrou-chapeau Série 652

∢	Réfé	rence)			A	E				V [l/min]					ır de jet
	Туре		Matiè	re Nr.		Ø [mm]	Ø [mm]									3 : 2 bar
Angle de jet		16	17 ¹⁾	30	5E						p [bar]					-
ngle		lnox 303	0x 316/ 6 L	Laiton	PVDF						[US gal./ min] à				H=	H=
₹		<u>n</u>	lnox 316	La	₫			0.5	1.0	2.0	40 psi	3.0	5.0	10.0	250 mm	500 mm
75°	652. 145	0	-	0	-	0.20	0.12	-	0.04*	0.05	0.02	0.06 0.08	0.08	0.11	285	550
	652. 165 652. 185	0	-	0		0.20 0.20	0.08 0.15	_	0.05* 0.06*	0.07 0.08	0.02	0.06	0.10 0.13	0.15 0.18	285 290	555 560
	652. 215	0	-	0	-	0.40	0.20	-	0.08*	0.11	0.03	0.14	0.18	0.25	290	560
	652. 245	0	-	0	-	0.50	0.30	-	0.12*	0.16	0.05	0.20	0.26	0.36	290	560
	652. 275	0	-	0	-	0.60	0.30	0.11*	0.16*	0.22	0.07	0.27	0.35	0.49	290	560
90°	652. 216	0	-	0	-	0.40	0.20	0.06*	0.08*	0.11	0.03	0.14	0.18	0.25	380	760
	652. 246	0	-	0	-	0.50	0.30	0.08*	0.12*	0.16	0.05	0.20	0.26	0.36	380	760
	652. 276	0	-	0	-	0.60	0.30	0.11*	0.16*	0.22	0.07	0.27	0.35	0.49	450	795
	652. 306	0	0	0	0	0.70 0.90	0.40 0.50	0.16* 0.22*	0.23* 0.32*	0.32 0.45	0.10 0.14	0.39 0.55	0.51 0.71	0.72 1.01	450 450	795 795
	652. 336 652. 366	0	0	0	0	1.00	0.50	0.22	0.32	0.43	0.14	0.33	1.00	1.01	450	795
	652, 406	0	0	0	0	1.20	0.70	0.50*	0.71	1.00	0.20	1.23	1.58	2.24	450	800
	652. 446	0	0	0	0	1.35	0.80	0.62*	0.88	1.25	0.39	1.53	1.98	2.80	450	800
	652. 486	0	0	0	0	1.50	0.80	0.80*	1.13	1.60	0.50	1.96	2.53	3.58	450	800
	652. 516	0	0	0	0	1.65	0.90	0.95*	1.34	1.90	0.59	2.33	3.00	4.25	450	800
	652. 566	0	0	0	0	2.00	1.10	1.25	1.77	2.50	0.78	3.06	3.95	5.59	450	805
	652. 606	0	0	0	0	2.20	1.20	1.58	2.23	3.15	0.98	3.86	4.98	7.04	450	805
	652. 646 652. 676	0	0	0	0	2.50 2.70	1.30 1.40	2.00 2.38	2.83 3.36	4.00 4.75	1.24 1.47	4.90 5.82	6.33 7.51	8.94 10.62	450 450	805 810
	652. 726	0	0	0	0	3.00	1.70	3.15	4.46	6.30	1.95	7.72	9.96	14.09	450	810
	652. 766	0	0	0	-	3.50	1.90	4.00	5.66	8.00	2.48	9.80	12.65	17.89	450	815
	652. 806	0	0	0	0	4.00	2.40	5.00	7.07	10.00	3.10	12.25	15.81	22.36	450	820
	652. 846	-	-	0	0	4.50	2.40	6.25	8.84	12.50	3.88	15.31	19.76	27.95	450	820
	652. 886	0	-	0	0	5.00	3.10	8.00	11.31	16.00	4.96	19.60	25.30	35.78	450	835
120°	652. 187	0	-	0	-	0.35	0.20	-	0.06*	0.08	0.02	0.10	0.13	0.18	640	1220
	652. 217	0	-	0	-	0.40	0.20	-	0.08*	0.11	0.03	0.14	0.18	0.25	650	1230
	652. 247	0	-	0	-	0.50	0.20	-	0.12*	0.16	0.05	0.20	0.26	0.36	655	1245
	652. 277	0	-	0	-	0.60	0.30	- 0.16*	0.16* 0.23*	0.22 0.32	0.07 0.10	0.27	0.35	0.49	655 660	1250 1260
	652. 307 652. 337	0	0	0	0	0.70 0.90	0.30 0.40	0.16* 0.22*	0.23"	0.32	0.10	0.39 0.55	0.51 0.71	0.72 1.01	660	1260
	652. 367	0	0	0	0	1.00	0.40	0.22	0.32	0.43	0.14	0.33	1.00	1.41	660	1265
	652. 407	0	0	0	0	1.20	0.60	0.50*	0.71	1.00	0.31	1.23	1.58	2.24	660	1270
	652. 447	0	0	0	0	1.35	0.60	0.62*	0.88	1.25	0.39	1.53	1.98	2.80	665	1270
	652. 487	0	0	0	0	1.50	0.60	0.80*	1.13	1.60	0.50	1.96	2.53	3.58	665	1270
	652. 517	0	0	0	0	1.65	0.90	0.95*	1.34	1.90	0.59	2.33	3.00	4.25	670	1275
	652. 567	0	0	0	0	2.00	0.90	1.25	1.77	2.50	0.78	3.06	3.95	5.59	670	1280
	652. 607 652. 647	0	0	0	0	2.20 2.50	1.10 1.30	1.58 2.00	2.23 2.83	3.15 4.00	0.98 1.24	3.86 4.90	4.98 6.33	7.04 8.94	675 680	1285 1295
	652. 677	0	0	0		2.50	1.40	2.38	3.36	4.75	1.24	5.82	7.51	10.62	685	1300
	652. 727	0	0	0	0	3.00	1.60	3.15	4.46	6.30	1.95	7.72	9.96	14.09	695	1315
	652. 767	0	0	0	-	3.50	1.70	4.00	5.66	8.00	2.48	9.80	12.65	17.89	705	1330
	652. 807	0	-	0	-	4.00	2.00	5.00	7.07	10.00	3.10	12.25	15.81	22.36	705	1330
	652. 847	-	-	-	0	4.50	2.30	6.25	8.84	12.50	3.88	15.31	19.76	27.95	800	1460
	652. 887	-	-	-	0	5.00	2.60	8.00	11.31	16.00	4.96	19.60	25.30	35.78	800	1460

 $^{^{1)}\,\}mathrm{Nous}$ nous réservons le droit de livrer de l'inox 316 ou 316 L à la place de la matière Nr. 17

Réf. complète Exemple de Matière Nr. Type commande : 652. 145 652. 145. 16

A = Diamètre de perçage équivalent \cdot E = Plus petite section de passage *Forme de jet différente Sous réserve de modifications techniques.


Buses à jet plat pour bandes de convoyeur Série 652, xxx, 8H, 03

Spécialement conçues pour les petits débits. Répartition parabolique du liquide.

Applications: Lubrification de bandes de convoyeur, pulvérisation sur produits alimentaires, graissage de tôles métalliques.

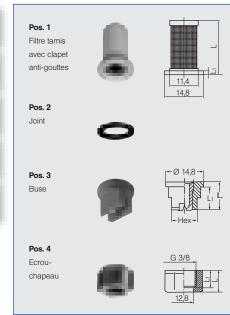
A	Référen	се		Couleur	E Ø		V [I/	min]	
/-	Туре	Ma	atNr.		[mm]				
پ		16	8H.03*						
) jet							р [bar]	
e de		303	303					-	
Angle)X	POM / Inox 30						
Ā		Nox	요일			1.0	2.0	3.0	5.0
75°	652. 145	0	0	vert	0.30	0.04**	0.05	0.06	0.08
	652. 165	0	0	noir	0.34	0.05**	0.07	0.08	0.10
	652. 185	0	0	rouge	0.20	0.06**	0.08	0.10	0.13
	652. 215	0	0	bleu	0.20	0.08**	0.11	0.14	0.18
	652. 245	0	0	orange	0.30	0.12**	0.16	0.20	0.26
	652.275	0	0	marron	0.30	0.16**	0.22	0.27	0.35
120°	652. 187	0	0	gris	0.20	0.06**	0.08	0.10	0.13
	652. 247	0	0	noir	0.20	0.12**	0.16	0.20	0.26
	652. 277	0	0	noir	0.30	0.16**	0.22	0.27	0.35

Gamme pression de service : 1.0 à 5.0 bar

Pression de service préconisée : 3.0 bar

Viscosité:

Ces buses peuvent fonctionner avec des média visqueux, par ex. des fluides de transmission (max. env. 200mPas). Cependant, l'angle de jet décroît.


Clapet anti-retour intégré dans le filtre-tamis :

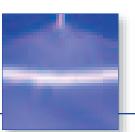
- Empêche l'égouttage et économise le fluide.
- Taille de la maille du filtre : 0.08 mm (200 Mesh)
- **■** 095.016.53.11.00 pression à l'ouverture : 0.5 bar approx. pression de fermeture : 0.3 bar approx.
- **1** 095.016.53.14.63 pression à l'ouverture : 2.8 bar approx. pression de fermeture : 1.6 bar approx.

^{**} Forme de jet différente Sous réserve de modifications techniques.

Pos.	Description	Référence	Matière	Dime	ensions [mm]	**
				L	L1	SW	[mm]
1	Filtre tamis avec clapet	095. 016. 53. 11. 00	PP	21	1.5	-	0.08
	anti-gouttes	095. 016. 53. 14. 63	PP	21	1.5	-	0.08
2	Joint	065. 240. 55	PTFE	-	-	-	-
	JOIN	065. 240. 72	EWP 210	-	-	-	-
3	Buse	Référence voir	Inox 303	11	9	10	-
<u> </u>	Duse	tableaux débit	POM/Inox 303*	12	10	8	-
4	Ecrou chapeau	065. 200. 16	lnox 303	13	10	22	-
-•	Lorou onapeau	065. 200. 56	POM	14.5	11.5	22	-

Corps en POM, Insert buse en Inox 303

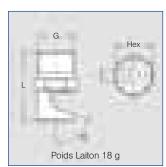
E = Plus petite section de passage


Corps en POM, Insert buse en en Inox 303

^{**} Taille de Maille

Buses à jet miroir

Série 686


Jet plat large, nettement délimité.

Buses particulièrement insensibles aux colmatages.

Applications:

Abattage de mousses dans les réservoirs, les laveurs de cribles et toutes les applications de nettoyage et lavage nécessitant des jets d'eau puissants et concentrés.

4	η		Réfe	érenc	e					В	V	[l/mi	n]				Dime	nsions				Largeur
	•	Туре	Ma	atière	Nr.		Cod	de G		Ø [mm]												de jet B à p=2 bar
*			16	30	5E																	Д ,
Angle de jet			m			卢	BSPT	BSPT	BSPT		ı) [bar	·]									B H
Angle			lnox 303	Laiton	PVDF	1/8 BSI	1/4 BS	3/8 BS	1/2 BS		1.0	2.0	5.0	R 1/8	I [m] R 1/4		R 1/2	R 1/8	[m	ex im] R 3/8	R 1/2	H = 250 mm
90°	53°	686, 366	-	0	-	CA	-	-	-	0.80	0.45	0.63	1.00	22	-	-	-	11	-	-	-	520
30	75°	686. 406	0	0	-	CA	-	-	-	1.00	0.71	1.00	1.58	23	-	-	-	11	-	-	-	525
	40°	686. 686	0	0	-	-	CC	-	-	2.40	3.54	5.00	7.91	-	29	-	-	-	14	-	-	530
	40°	686. 726	-	0	-	CA	-	-	-	2.70	4.45	6.30	9.96	26	-	-	-	11	-	-	-	530
	40°	686. 806	0	0	-	-	CC	-	-	3.40	7.07	10.00	15.81	-	34	-	-	-	14	-	-	530
	40°	686. 886	0	-	-	-	CC	-	-	4.20	11.31		25.30	-	36	-	-	-	17	-	-	530
	40°	686. 926	0	-	-	-	-	CE	-	4.70	14.14	20.00	31.62	-	-	39	-	-	-	17	-	530
140°	75°	686. 368	0	0	-	CA	-	-	-	0.80	0.45	0.63	1.00	23	-	-	-	11	-	-	-	1360
		686. 408	0	0	-	CA	-	-	-	1.00	0.71	1.00	1.58	23	-	-	-	11	-	-	-	1370
		686. 448	0	0	-	-	CC	-	-	1.20	0.88	1.25	1.98	-	28	-	-	-	14	-	-	1370
		686. 488	0	0	-	CA	CC		-	1.30	1.13	1.60	2.53	23	28	-	-	11	14	-	-	1370
		686. 528	0	0	-*	CA	CC	-	-	1.50	1.41	2.00	3.16	23	28	-	-	11	14	-	-	1370 1370
		686. 568 686. 608	0	0	0*	CA	CC	-	-	1.70 1.90	2.23	3.15	3.59 4.98	23	28	-	-	11	14	-	-	1370
		686, 648	0	0	-	CA	CC			2.20	2.23	4.00	6.32	-	28	_	_	_ ' '	14	_		1370
		686, 688	0	0		CA	CC			2.40	3.54	5.00	7.91	23	28	_	_	11	14	_	_	1370
		686, 728	0	0	_	CA	CC		_	2.70	4.45	6.30	9.96	23	-	_	_	11	-	_	_	1370
		686, 768	0	0	_	-	CC	_	_	3.00	5.66	8.00	12.65		28	_	_	-	14	_	_	1370
		686. 808	0	0	_	CA	СС	_	-	3.40	7.07	10.00	15.81	23	28	_	_	11	14	_	-	1370
		686. 828	0	0	-	-	CC	-	-	3.60	7.92	11.20	17.71	-	28	-	-	-	14	-	-	1370
		686. 848	0	0	-	-	СС	-	-	3.80	8.80	12.50	19.76	-	28	-	-	-	14	-	-	1370
		686. 868	0	0	-	-	CC	-	-	4.00	9.90	14.00	22.14	-	28	-	-	-	14	-	-	1370
		686. 888	0	0	-	-	CC	-	-	4.20	11.31		25.30	-	28	-	-	-	14	-	-	1370
		686. 908	0	0	-	-	CC	-	-	4.50	12.73	18.00			28	-	-	-	14	-	-	1370
		686. 928	0	-	-	-	-	CE	-	4.70		20.00		-	-	32	-	-	-	17	-	1370
		686. 968	-	0	-	-	-	CE	CG	5.30				-	-	32	40	-	-	17	22	1370
		686. 988	0	-	-	-	-	CE	CG	5.60	19.80	28.00	44.27	-	-	32	40	-	-	17	22	1370

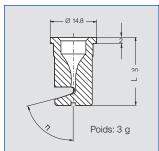
B = Diamètre de perçage

Aussi utilisable pour de l'air et de la vapeur saturée.

* Uniquement disponible avec code CA.

Exemple de + Matière Nr. + Code = Réf. complète commande : 686.366 + 30 + CA = 686. 366. 30. CA

Buses à jet miroir avec écrou-chapeau Séries 684 / 688 / 689


Série 684

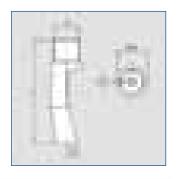
Assemblage avec écrouchapeau. Jet plat large, nettement délimité. Buses particulièrement insensibles aux colmatages. Changement de buse facile à effectuer, alignement simple du jet.

Applications:

Abattage de mousses dans les réservoirs, les laveurs de cribles et toutes les applications de nettoyage et lavage nécessitant des jets d'eau puissants et concentrés.

Þ	η	Référence	!		Couleur**	B Ø		V [l/min]		L	Largeur de jet B
	-	Type	Ma N	at Ir.		[mm]				[mm]	à p = 2bar
de jet			56	5E				p [bar]			- B - I
Angle			POM	PVDF			1.0	2.0	5.0		H = 250 mm
140°	75°	684. 348	0	-	vert	0.7	0.35*	0.50	0.79	20	1360
	75°	684. 368	0	0	jaune	0.8	0.45*	0.63	1.00	20	1360
	75°	684. 408	0	-	bleu	1.0	0.71	1.00	1.58	20	1370
	75°	684. 448	0	-	rouge	1.2	0.88	1.25	1.98	20	1370
	75°	684. 488	0	0	marron	1.3	1.13	1.60	2.53	20	1370
	75°	684. 528	0	-	gris	1.5	1.41	2.00	3.16	20	1370
	75°	684. 568	0	0	blanc	1.7	1.77	2.50	3.95	19	1370
	75°	684. 608	0	-	light blue	1.9	2.23	3.15	4.98	19	1370
	75°	684. 688	0	-	vert	2.4	3.54	5.00	7.91	17	1370
	75°	684. 728	0	0	noir	2.7	4.45	6.30	9.96	17	1370
	75°	684. 808	0	-	purple	3.4	7.07	10.00	15.81	16	1370

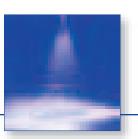
B = Diamètre de perçage · * Forme de jet différente. · ** Matière PVDF généralement bleue


Séries 688 / 689

Jet dur et tranchant, forme de jet nettement délimitée. Buses insensibles aux colmatages.

Applications : Abattage de mousses dans les réservoirs, les laveurs de cribles et toutes les applications de nettoyage et lavage nécessitant des jets d'eau puissants et concentrés.

4	η	Réfé	rence				B Ø		V [I/	min]		Dimer	nsions	Poids	_	r de jet
'	-	Type	Mat	Nr.	Coc	le G	[mm]								à p=	
je			16	5E												
de je						0		p [bar]							_	<u> </u>
			303	ш	BSPT	BSPP		p [om]							;—в- Н=	H=
Angle			Inox	PVDF	3/8	3/4		0.5	1.0	2.0	5.0	L [mm]	SW [mm]		250 mm	500 mm
1																
45°	35°	688. 763	0	-	CE	-	3.0	4.00	5.66	8.00	12.65	43	19	114 g	220	440
	30°	688. 843	0	-	CE	-	3.8	6.25	8.84	12.50	19.76	50	19	133 g	220	440
	29°	688. 923	0	-	CE	-	4.8	10.00	14.14	20.00	31.62	59	22	247 g	220	440
	35°	689. 003	0	0	-	90	6.0	15.75	22.27	31.50	49.81	80/80	32/24	306/33	250	490


B = Diamètre de perçage

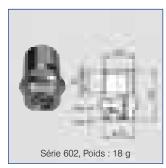
Buses à jet plat pour haute pression

Séries 602 / 608 / 652

Jet tranchant et uniforme avec une profondeur de jet extrêmement étroite.

Applications:

Nettoyage à haute pression, nettoyage au jet de vapeur. Matières:


Corps : Acier inoxydable

Inox 303

Insert: Acier inoxydable

trempé 1.403 S

US	C	Code buse	Э		Code	Débit		A	A V [I/min]						
gal/min. à	Ra	ccordem	ent		Angle	de jet		[mm]		p [bar]					
40 psi	1/8"	1/4"	écrou	\$ 20°	\$30°	⋠45°	\$60°		40	60	80	100	120	150	200
02	608	602	652	361	362	363	364	1.00	2.86	3.50	4.04	4.52	4.95	5.53	6.39
025	608	602	652	381	382	383	384	1.10	3.54	4.33	5.00	5.59	6.12	6.85	7.91
03	608	602	652	401	402	403	404	1.18	4.31	5.28	6.10	6.82	7.47	8.35	9.64
034	608	602	652	411	412	413	414	1.30	4.95	6.06	7.00	7.83	8.57	9.59	11.07
04	608	602	652	451	452	453	454	1.35	5.80	7.10	8.20	9.17	10.04	11.23	12.97
045	608	602	652	471	472	473	474	1.40	6.51	7.97	9.20	10.29	11.27	12.60	14.55
05	608	602	652	481	482	483	484	1.55	7.29	8.92	10.30	11.52	12.62	14.11	16.29
055	608	602	652	501	502	503	504	1.60	7.96	9.74	11.25	12.58	13.78	15.41	17.79
06	608	602	652	521	522	523	524	1.72	8.70	10.66	12.31	13.76	15.07	16.85	19.46
065	608	602	652	531	532	533	534	1.75	9.38	11.49	13.26	14.83	16.25	18.16	20.97
07	608	602	652	541	542	543	544	1.80	10.06	12.32	14.22	15.90	17.42	19.47	22.49
075	608	602	652	551	552	553	554	1.90	10.75	13.16	15.20	16.99	18.62	20.81	24.04
08	608	602	652	571	572	573	574	2.05	11.48	14.06	16.23	18.15	19.88	22.23	25.67
09	608	602	652	591	592	593	594	2.10	13.01	15.93	18.40	20.57	22.53	25.19	29.09
10	608	602	652	601	602	603	604	2.30	14.43	17.76	20.40	22.81	24.99	27.94	32.26
125	-	602	652	641	642	643	644	2.50	17.82	21.82	25.20	28.17	30.86	34.51	39.85
15	-	602	652	671	672	673	674	2.70	21.35	26.15	30.20	33.76	36.98	41.35	47.74
175	-	602	652	701	702	703	704	3.00	25.03	30.66	35.40	39.58	43.36	48.47	55.97
20	-	602	652	-	-	723	724	3.05	28.85	35.33	40.80	45.62	49.97	55.87	64.52
30	-	602	652	-	-	793	-	3.90	42.43	51.96	60.00	67.08	73.48	82.16	94.88

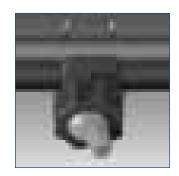
A = Diamètre de perçage équivalent

Code Raccordement	Raccordement	p _{max} [bar]			
A3. 00	BSPT	ca. 350			
A3. 07	NPT	ca. 350			
A3. 29	Ecrou-chapeau	ca. 200			

Exemple de Code Buse + Code Débit + Code Raccordement = Réf. complète commande: 602 = 602. 361. A3. 07 + 361 + A3. 07

(jet plat 20°; 4.52 l/min. à 100 bar; 1/4" NPT)

Buses de pulvérisation avec articulation sphérique "Easy-Clip"


Montage facile et rapide. Fixation par clip sans utilisation d'outil. Angle d'orientation de 30° autour de l'axe. Ajustement et nettoyage très faciles.

Applications: Laveurs de cribles, applications de nettoyage et lavage. Matières:

Colliers de fixation : acier inoxydable 1.4310 Joint : EPDM Aiguille cylindre, Ecrou,

Ensemble écrou : 1.4401 Corps, Ecrou-chapeau: PP,

renforcé Buse, Sphère: PP

Ensembles

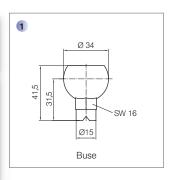
Composés de :

- **■** Buse
- Collier de fixation simple pour tuyau 1 1/4"
- **■** Ecrou-chapeau

Référence	Couleur Buse	\$	▼ V [l/min]							
	Duse		p [bar]							
			0.5 1.0 1.5 2.0 2.5							
676. 724. 53. 31	gris		3.15	4.45	5.45	6.30	7.04			
676. 764. 53. 31	marron		4.00	5.66	6.93	8.00	8.94			
676. 804. 53. 31	lila		5.00	7.07	8.66	10.00	11.18			
676. 844. 53. 31	jaune	60°	6.25	8.84	10.83	12.50	13.98			
676. 884. 53. 31	rouge		8.00	11.31	13.85	16.00	17.89			
676. 904. 53. 31	bleu		9.10	12.87	15.76	18.20	20.35			
676. 924. 53. 31	vert		10.00	14.14	17.32	20.00	22.36			

Composés de :

- **■** Buse sphérique
- Collier de fixation simple pour tuyau 1 1/4"
- **■** Ecrou-chapeau

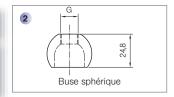

Référence	Couleur sphére	Raccorde- ment Buse	Adaptée aux séries de buses
092. 081. 53. AB	beige	G 1/8"	460, 632, 686,610, 544
092. 081. 53. AD	beige	G 1/4"	422, 460, 544, 612, 632, 686
092. 081. 53. AF	beige	G 3/8"	422, 460, 632, 686, 688
092. 081. 53. AH	beige	G 1/2"	422, 460, 632, 686

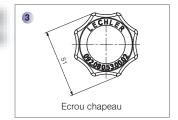
4b Collier Collier Collier de simple double montage Sphère Série 422 Série Série Série Série Ecrou-chapeau

Composants

1 Buse

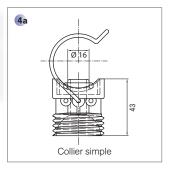
Référence	Couleur	\$	v [l/min]							
			p [bar]							
			0.5 1.0 1.5 2.0 2							
676. 724. 53. 30. 01	gris		3.15	4.45	5.45	6.30	7.04			
676. 764. 53. 30. 01	marron		4.00	5.66	6.93	8.00	8.94			
676. 804. 53. 30. 01	lila		5.00	7.07	8.66	10.00	11.18			
676. 844. 53. 30. 01	jaune		6.25	8.84	10.83	12.50	13.98			
676. 884. 53. 30. 01	rouge	60°	8.00	11.31	13.85	16.00	17.89			
676. 904. 53. 30. 01	bleu		9.10	12.87	15.67	18.20	20.35			
676. 924. 53. 30. 01	vert		10.00	14.14	17.32	20.00	22.36			
092. 080. 53. 00. 01 gris Buse borgne										


Système "Easy-Clip"


2 Buse sphérique

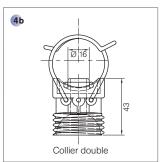
Référence	Couleur	Raccorde- ment Buse	Adaptée aux séries de buses
092. 080. 53. AB. 01	beige	G 1/8"	460, 544, 610, 632, 686
092. 080. 53. AD. 01	beige	G 1/4"	422, 460, 544, 612, 632, 686
092. 080. 53. AF. 01	beige	G 3/8"	422, 460, 632, 686, 688
092. 080. 53. AH. 01	beige	G 1/2"	422, 460, 632, 686

3 Ecrou chapeau


	Référence
I	092. 080. 53. 00. 02

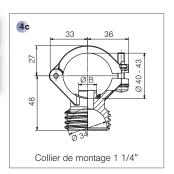
4a Collier simple

Référence	Ø de perçage	Ø de tuyau				
< 092. 080. 53. 00	16 mm	1" (32.0-34.5 mm)				
092. 081. 53. 00	16 mm	1 1/4" (40.0-43.0 mm)				
092. 082. 53. 00	16 mm	1 1/2" (46.0-49.0 mm)				
092. 083. 53. 00	16 mm	2" (58.0-62.0 mm)				


D'autres \varnothing de perçage disponibles sur demande (13.8/20.0 mm)

4b Collier double

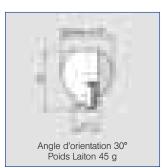
Référence	Ø de perçage	Ø de tuyau				
092. 090. 53. 00	16 mm	1" (32.0-34.5 mm)				
092. 091. 53. 00	16 mm	1 1/4" (40.0-43.0 mm)				
092. 092. 53. 00	16 mm	1 1/2" (46.0-49.0 mm)				
092. 093. 53. 00	16 mm	2" (58.0-62.0 mm)				


D'autres \emptyset de perçage disponibles sur demande (13.8/20.0 mm)

4c Collier de montage

Référence	Ø de perçage	Ø de tuyau				
090. 023. 53. 43. 10. 0	16 mm	1" (32.0-34.5 mm)				
090. 033. 53. 43. 10. 0	16 mm	1 1/4" (40.0-43.0 mm)				
090. 043. 53. 43. 10. 0	16 mm	1 1/2" (46.0-49.0 mm)				

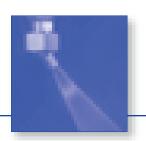
D'autres \varnothing de perçage disponibles sur demande (13.8/20.0 mm)


Buses de pulvérisation à jet plat avec articulation sphérique Série 676

Buse orientable, permettant d'aligner le jet avec précision. Pas de joint d'étanchéité nécessaire, donc fonctionnement sans problème et haute résistance à l'usure.

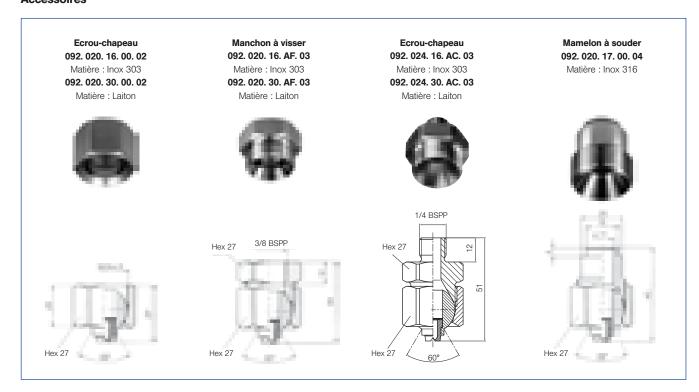
Applications: Opérations de nettoyage (par ex. surfaces, filtres, bandes), laveurs de cribles, lubrification, revêtement.

\$	Référence)		A	E			V [I/	min]				ur de jet
	Туре	Mat	Nr.	Ø [mm]	Ø [mm]								B = 2 bar
		16	30										
Angle de jet							n	[bar] (pr	max = 30 b	ar)		/ `	/ i
de							P	[υαι] (ρι	11ax — 00 D	ai)		()	!
<u>e</u>		05											
å		1.4305	Ms			0.5	1.0	2.0	3.0	5.0	10.0	H = 250 mm	H = 500 mm
		,											
45°	676. 303	0	0	0.70	0.50	0.16*	0.23*	0.32	0.39	0.51	0.72	150	270
	676. 363	0	0	1.00	0.60	0.31*	0.44*	0.63	0.77	1.00	1.40	155	280
	676. 403	0	0	1.20	0.90	0.50*	0.71	1.00	1.23	1.58	2.24	175	320
	676. 483 676. 563	0	0	1.50 2.00	1.10 1.40	0.80 1.25	1.13 1.77	1.60 2.50	1.96 3.06	2.53 3.95	3.58 5.59	180 185	340 355
	676. 643	0	0	2.00 2.50	1.40	2.00	2.83	4.00	4.90	6.33	8.94	195	355
	676. 723	0	0	3.00	2.40	3.15	4.46	6.30	7.72	9.96	14.09	200	375
	676. 763	0	0	3.50	2.60	4.00	5.66	8.00	9.80	12.65	17.89	200	380
	676. 803	0	0	4.00	3.00	5.00	7.07	10.00	12.25	15.81	22.36	205	385
60°	676, 304	0	0	0.70	0.40	0.16*	0.23*	0.32	0.39	0.51	0.72	215	425
00	676. 334	0	0	0.90	0.50	0.22*	0.32*	0.45	0.55	0.71	1.01	220	440
	676. 364	0	0	1.00	0.60	0.31*	0.44*	0.63	0.77	1.00	1.40	230	460
	676. 404	0	0	1.20	0.80	0.50*	0.71	1.00	1.23	1.58	2.24	245	485
	676. 444	0	0	1.35	0.90	0.62*	0.88	1.25	1.53	1.98	2.80	255	495
	676. 484	0	0	1.50	1.00	0.80*	1.13	1.60	1.96	2.53	3.58	260	510
	676. 514	0	0	1.65	1.10	0.95*	1.34	1.90	2.33	3.00	4.25	270	520
	676. 564	0	0	2.00	1.30	1.25	1.77	2.50	3.06	3.95	5.59	280	535
	676. 604	0	0	2.20	1.50	1.58	2.23	3.15	3.86	4.98	7.04	290	550
	676. 644	0	0	2.50	1.60	2.00	2.83	4.00	4.90	6.33	8.94	295	565
	676. 674	0	0	2.70	1.80	2.38	3.36	4.75	5.82	7.51	10.62	300	575
	676. 724	0	0	3.00	2.10	3.15	4.46	6.30	7.72	9.96	14.09	305	590
	676. 764	0	0	3.50	2.30	4.00	5.66	8.00	9.80	12.65	17.89	310	595
90°	676. 216	0	0	0.40	0.20	-	0.08*	0.11	0.14	0.18	0.25	370	700
	676. 276	0	0	0.60	0.30	0.11*	0.16*	0.22	0.27	0.35	0.49	375	720
	676. 306	0	0	0.70	0.40	0.16*	0.23*	0.32	0.39	0.51	0.72	380	740
	676. 336	0	0	0.90	0.50	0.22*	0.32*	0.45	0.55	0.71	1.01	415	800
	676. 366	0	0	1.00 1.20	0.50 0.70	0.31* 0.50*	0.44* 0.71	0.63 1.00	0.77 1.23	1.00	1.40 2.24	420 430	810 820
	676. 406 676. 446	0	0	1.20	0.70	0.50*	0.71	1.00	1.53	1.58 1.98	2.24	430	830
	676. 486	0	0	1.50	0.80	0.82*	1.13	1.60	1.96	2.53	3.58	440	835
	676. 516	0	0	1.65	0.90	0.95*	1.34	1.90	2.33	3.00	4.25	440	840
	676. 566	0	0	2.00	1.10	1.25	1.77	2.50	3.06	3.95	5.59	445	850
	676. 606	0	0	2.20	1.20	1.58	2.23	3.15	3.86	4.98	7.04	450	860
	676. 646	0	0	2.50	1.30	2.00	2.83	4.00	4.90	6.33	8.94	455	865
	676. 676	0	0	2.70	1.40	2.38	3.36	4.75	5.82	7.51	10.62	465	875
	676. 726	0	0	3.00	1.70	3.15	4.46	6.30	7.72	9.96	14.09	470	885


 ${\sf A}={\sf Diamètre}$ de perçage équivalent $\cdot\,{\sf E}={\sf Plus}$ petite section de passage * Forme de jet différente

Voir suite en page 57.

Buses de pulvérisation à jet plat avec articulation sphérique Série 676



\$	Référence	!		А	Е		V [l/min]							
1	Type	Mat	Nr.	Ø	Ø	• [*]							B à p = 2 bar	
	1,00			[mm]	[mm]									
e de jet		16	30			p [bar] (pmax = 30 bar)							H H	
Angle		1.4305	Ms			0,5	0,5 1,0 2,0 3,0 5,0 10,0							
120°	676. 187	0	0	0,35	0,20	-	0,06*	0,08	0,10	0,13	0,18	630	1200	
	676. 217	0	0	0,40	0,20	-	0,08*	0,11	0,14	0,18	0,25	640	1210	
	676. 247	0	0	0,50	0,20	-	0,12*	0,16	0,20	0,26	0,36	650	1230	
	676. 277	0	0	0,60	0,30	-	0,16*	0,22	0,27	0,35	0,49	660	1250	
	676. 307	0	0	0,70	0,30	0,16*	0,23*	0,32	0,39	0,51	0,72	660	1250	
	676. 337	0	0	0,90	0,40	0,22*	0,32*	0,45	0,55	0,71	1,01	670	1270	
	676. 367	0	0	1,00	0,50	0,31*	0,44*	0,63	0,77	1,00	1,40	670	1270	
	676. 407	0	0	1,20	0,60	0,50*	0,71	1,00	1,23	1,58	2,24	670	1270	
	676. 447	0	0	1,35	0,60	0,62*	0,88	1,25	1,53	1,98	2,80	675	1270	
	676. 487	0	0	1,50	0,60	0,80*	1,13	1,60	1,96	2,53	3,58	680	1275	
	676. 517	0	0	1,65	0,90	0,95*	1,34	1,90	2,33	3,00	4,25	685	1280	
	676. 567	0	0	2,00	0,90	1,25	1,77	2,50	3,06	3,95	5,59	690	1285	
	676. 607	0	0	2,20	1,10	1,58	2,23	3,15	3,86	4,98	7,04	700	1300	
	676. 647	0	0	2,50	1,30	2,00	2,83	4,00	4,90	6,33	8,94	700	1300	
	676. 677	0	0	2,70	1,40	2,38	3,36	4,75	5,82	7,51	10,62	720	1330	
	676. 727	0	0	3,00	1,60	3,15	4,46	6,30	7,72	9,96	14,09	740	1360	
	676. 767	0	0	3,50	1,70	4,00	5,66	8,00	9,80	12,65	17,89	760	1400	

 $^{{\}sf A}={\sf Diamètre}$ de perçage équivalent $\,\cdot\,{\sf E}={\sf Plus}$ petite section de passage * Forme de jet différente

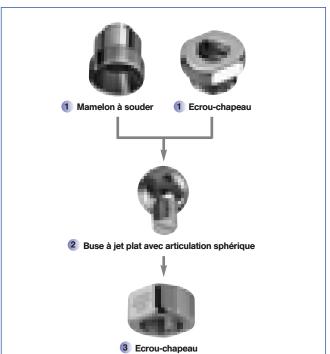
Exemple de	Туре	+	Matière Nr.	=	Réf. complète
commande :	676. 145	+	16	=	676. 145. 16

Accessoires

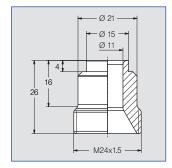
Buses de pulvérisation et accessoires

Conception hygiénique

Caractéristiques:


Les buses de pulvérisation et leurs accessoires "spécial hygiène" se caractérisent par leur excellente finition en surface (RA<0,8µm). Ceci réduit la tendance aux

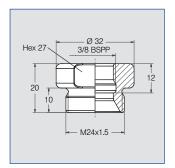
salissures et rend les produits hygiéniques.

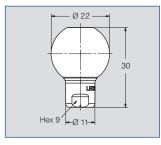

Les buse et les accessoires sont disponibles en 316L (1.4435) ou 316TI (1.4571) et les joints sont fabriqués en EPDM certifié FDA.

Applications:

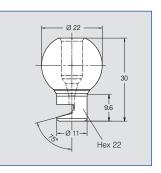
Remplissage aseptisé, adapté aux exigences élevées en matière d'hygiène.

Référence 092.020.1E.67.38

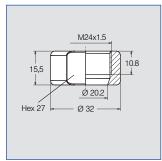

Buse à jet plat avec articulation sphérique montage 30° dans toutes directions



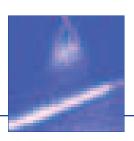
Buse à jet miroir avec articulation sphérique, montage 30° dans toutes directions

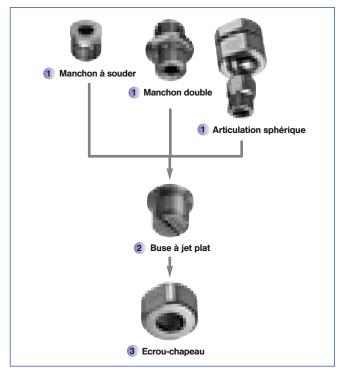


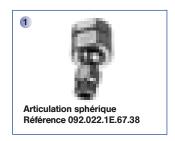
Ecrou-chapeau pour articulation sphérique Référence 092.020.1E.67.02

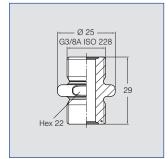


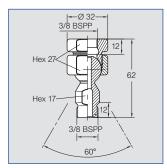
\$	Référence	ऐ [l/min] à 2 bar
20°	676.641.17.67	4.00
30°	676.402.17.67	1.00
	676.562.17.67	2.50
	676.722.17.67	6.30
	676.802.17.67	10.00
45°	676.763.17.67	8.00
	676.883.17.67	16.00
60°	676.514.17.67	1.90
	676.764.17.67	8.00
90°	676.366.17.67	0.60
	676.646.17.67	4,00
120°	676.647.17.67	4,00
	676.676.17.67	8,00

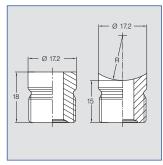

\$	Référence	ỷ [l/min] à 2 bar
140°	6ZK.648.1E.67	4.00

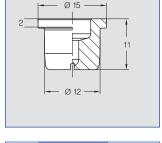


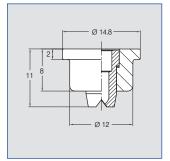

Buses de pulvérisation et accessoires


Conception hygiénique



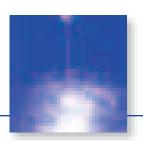






3/8 BSPP 14 14 0 25	
---------------------	--

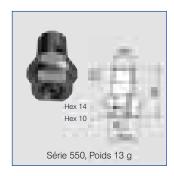
Référence	Rayon [mm]
065.210.1E.67.00	no radius
065.217.1E.67.10	10
065.217.1E.67.13	12,5
065.217.1E.67.16	16
065.217.1E.67.20	20
065.217.1E.67.31	31

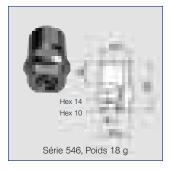

\$	Référence	ỷ [l/min] à 2 bar
60°	652.604.1E.67	3,10
	652.924.1E.67	20,00

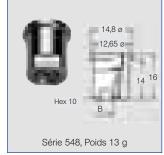
≮	Référence	V [l/min] à 2 bar
60°	652.484.17.87	1,60
	652.514.17.87	1,90
	652.544.17.87	2,20
	652.564.17.87	2,50
	652.604.17.87	3,10
	652.644.17.87	4,00
	652.674.17.87	4,70
	652.724.17.87	6,30
	652.764.17.87	8,00

Buses de pulvérisation à jet rectiligne

Séries 546 / 548 / 550




Jet rectiligne très étroit, extrêmement concentré, avec impact précis. Puissance du jet maximale. Procédés de décapage, de découpage et de séparation.


Matière:

Corps de buse : Inox 303 SS

Insert: Inox trempé 1.4034S

US		Code buse		Code	В				V [l/min]			
gal/min. à	F	Raccordeme		debit	débit Ø [mm] p [bar]							
40 psi	1/8"	1/4"	Ecrou- chapeau			40	60	80	100	150	200	300
02	550	546	548	360	0.84	2.86	3.50	4.04	4.52	5.54	6.39	7.83
03	550	546	548	400	1.03	4.31	5.28	6.10	6.82	8.35	9.64	11.81
034	550	546	548	410	1.07	4.70	5.80	6.70	7.49	9.17	10.59	12.97
035	550	546	548	420	1.11	5.06	6.20	7.16	8.00	9.80	11.32	13.86
04	550	546	548	450	1.19	5.80	7.10	8.20	9.17	11.23	12.97	15.88
045	550	546	548	470	1.26	6.54	8.00	9.25	10.34	12.66	14.62	17.91
05	550	546	548	480	1.33	7.29	8.92	10.30	11.52	14.11	16.29	19.95
055	550	546	548	500	1.39	7.96	9.75	11.26	12.59	15.42	17.80	21.81
06	550	546	548	520	1.46	8.70	10.66	12.31	13.76	16.85	19.46	23.83
08	550	546	548	570	1.69	11.48	14.06	16.23	18.15	22.23	25.67	31.44
10	550	546	548	600	1.88	14.32	17.54	20.25	22.64	27.73	32.02	39.21
15	550	546	548	670	2.30	21.60	26.46	30.55	34.16	41.84	48.31	59.17
20	550	546	548	720	2.66	28.85	35.34	40.80	45.62	55.87	64.52	79.02

B = Diamètre de perçage

Code raccordement	Raccordement	p _{max} [bar]		
A3. 00	BSPT	approx. 350		
A3. 07	NPT	approx. 350		
A3. 29	écrou-chapeau	approx. 200		

Exemple de Code buse + Code Débit + Code Raccordement = Réf. complète

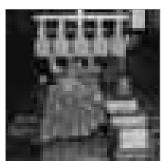
550. 360. A3. 07 (jet rectiligne; commande: 550 + 360 + A3. 07

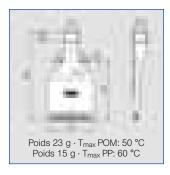
4.52 l/min. à 100 bar; 1/8" NPT)

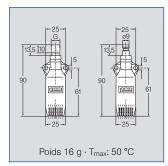
Buses de soufflage à jet multicanaux pour air comprimé

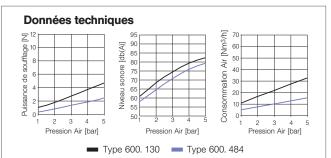
Whisperblast®, version en matière plastique

Séries 600, 130 / 600, 484


Particulièrement silencieuses!


Jet puissant efficace, agissant sur les surfaces. Niveau sonore réduit. Faible consommation d'air.


Applications: Elimination et soufflage, nettoyage, séchage, refroidissement, tri.



600. 130. 30.* 04. 00. 1
600. 130. 01.* 03 600. 130. 17.* 03
600. 130. 56. 02
600. 130. 56. 01 avec accessoires *01 = 1.0711 / 17 = 316 SS / 30 = Laiton

Référence								
Туре	Matiè	re Nr.	Code					
	S2	56 WOd	1/4 BSPP	1/4 NPT	M12 x 1.25	Raccord rapide NW 5		
600. 130	0	0	AC	ВС	-	-		
600. 130 avec dispositif obturateur	-	0	02	-	-	-		
avec dispositif obturateur, Raccord pour flexible (D = 8 mm) et Tube d'extension en acier (L = 85 mm)	-	0	01	-	-	-		
600. 484	-	0	AC	ВС	HG	00		

+ Matière Nr. + Code = Réf. complète Exemple de Type commande: 600.130. + + AC 600. 130. 56. AC

Manchon à visser Référence Nr. 095.016.30.14.23.0

Matière : Laiton

pour raccordement de la série 600.130 avec pistolet à air comprimé

Pour les articulations sphériques, voir en page 66

Buses de soufflage à jet multicanaux pour air comprimé

Whisperblast®, versions métalliques

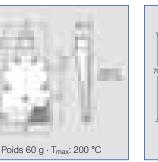
Séries 600, 283 / 600, 493 / 600, 562

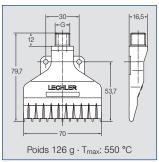
Particulièrement silencieuses!

Versions métalliques pour hautes températures. Jet puissant efficace, agissant sur les surfaces. Niveau sonore réduit. Faible consommation d'air.

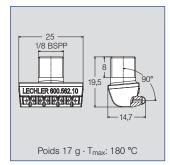
Applications: Elimination et soufflage, nettoyage, séchage, refroidissement, transporter à l'aide de l'air.

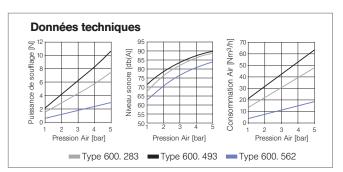
Manchon à visser Référence Nr. 095.016.30.14.23.0


Matière : Laiton


Pour raccordement avec pistolet à air comprimé des séries :

- 600. 283 - 600. 493





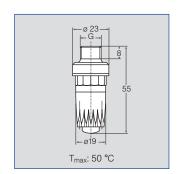
Référence							
Туре	Matiè	re Nr.		Code			
	42 1Y						
	nium Inox		BSPP	SPP	直		
	Aluminium	Acier Inox	1/8 B	1/4 BSPP	1/4 NPT		
		4					
600. 283	0	-	-	AC	BC		
600. 493	-	0	-	AC	BC		
600. 562. 1Y. 10	-	0	0	-	-		

Exemple de Type + Matière Nr. + Code = Réf. Buse complète commande: 600.283. + 42. + AC = 600. 283. 42. AC

Pour les articulations sphériques, voir en page 66

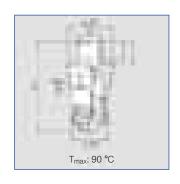
Séries 600, 326 / 600.388

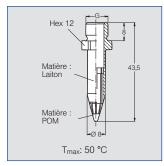
Jet puissant efficace, produisant un impact précis. Niveau sonore réduit. Faible consommation d'air.


Applications:

Elimination et soufflage ciblés, avec des pistolets à air comprimé.

Peut être jusqu'à 12 dB (A) plus silencieuse qu'une buse à orifice unique comparable





Mini-buse à jet rond de conception compacte. Applications : Particulièrement bien adaptées aux zones d'accès difficiles comme les trous

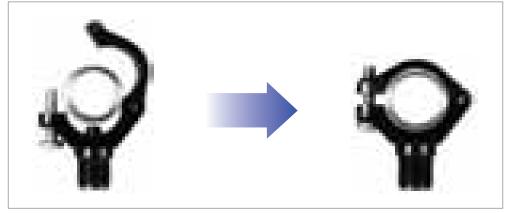
borgnes.

Pour les articulations sphériques, voir en page 66

Référence		Raccordement G	Poids
Type	Code		
600. 326. 5K	AC	1/4 BSPP	0.0
(Matière ABS)	HG	M 12 x 1.25	9 g
600. 326. 3W	AC	1/4 BSPP	47 g
(Matière Zinc)	HG	M 12 x 1.25	47 g
600. 388. 30	AA	1/8 BSPP	12 g
(Matière Laiton/POM)	HG	M 12 x 1.25	12 g

Exemple de	Туре	+	Code	=	Réf. Buse complète
commande :	600. 326. 5K	+	AC	=	600. 326. 5K. AC

Données techniques	
100 90 90 90 90 90 90 90	50 50 12 40 40 10 10 50 00 12 13 14 15 15 16 16



Colliers de montage / Ecrou-chapeau

	Réf. Buse co	omplè	te						Di	mensio	ons				
(0	Type	Ma	atière	Nr.						[mm]					
Pour les séries		Polyamide 15	Polypropylène 53	5E AQVA	Vis	BSPP	Tuyau ø	D ø	B _R	B ₁	B ₂	B ₃	H ₁	H ₂	Poids (Polyamide)
50	090. 053	0	0	0		3/8	3/8"	16.5- 18.0	6.2	19.0	22.0	18.5	34.5	14.5	20 g
/302/308/350 /679/684/652	090. 003	0	0	0	< 303	3/8	1/2"	20- 22.0	6.2	21.2	23.8	18.5	36.5	16.5	20 g
/305/	090. 013	0	0	0	Matière Inox	3/8	3/4"	25- 27.5	7.8	24.5	26.5	22.0	39.5	17.5	25 g
2TR/216/ 468/548/	090. 023	0	0	0	Matiè	3/8	1"	32- 34.5	10.8	30.0	31.0	22.0	44.0	21.0	32 g
2T 46	090. 033	0	0	0		3/8	1 1/4"	40- 43.0	12.8	34.0	35.5	25.0	48.0	25.0	38 g

	Réf. Bi	use co	mplè	te								
w	Type		Ma	atière	Nr.				[mm]			
Pour les séries		16 Inox 303	17 918 xou	Laiton 08	56 WOd	5E JOAN	BSPP	H ₁	H ₂	D	Hex	Poids (Laiton)
п.		느			Δ.	Δ.	DOFF	П1	П2	D	пех	ш
2TR/468/548 652/660/679 684	065. 200 065. 200 069. 000	0 - 0	• •	• •	- 0	- 0	3/8 3/8 UNF 11/16	13.0 14.5 13.0	10.0 11.5 10.0	12.8 12.8 12.8	22 22 22	25 g
656/657 664/665	065. 600	0	0	0	-	0	3/8	16.0	13.0	20.1	32	60 g

Pour les filtres et les clapets anti-gouttes, merci de voir en page 67

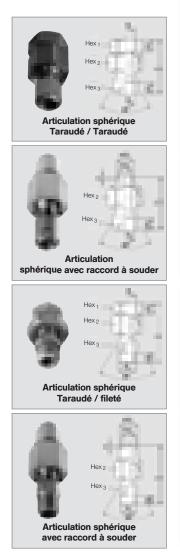
Exemple de Type + Matière Nr. = Réf. Buse complète commande : 090.053 + 51 = 090.053.51

Manchons à visser / Mamelons à souder

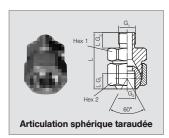
		Réf. B	use co	omplè	te					Dir	mension [mm]	S			
	S	Туре			atière						įg				
	série		02	1Y	17	30	53								<u></u>
	Pour les séries		Acier	316L	Inox 316	Laiton	Polypropylène	G ₁	G ₂	H ₁	H ₂	D ₁	D ₂	Hex	Poids (Laiton)
Hex	Pour toutes les buses avec 1/8" filetées mâle.	040. 270	-	0	-	0	-	-	1/8 BSPP	20	10	13.8	-	14	20 g
Manchons à visser	Pour toutes les buses avec 1/4" filetées mâle.	061. 220	-	0	-	0	-	-	1/4 BSPP	20	10	16.8	-	17	25 g
I A	Pour toutes les buses avec 3/8" filetées mâle.	040. 271 040. 271	-	-	0 -	-	-	-	3/8 BSPP 3/8 BSPP	20 20	10 10	21.5 24.5	-	22 22	25 g 25 g
H ₂ H ₁ H ₁ H ₁ H ₁ H ₂ H ₃ H ₂ H ₃ H ₄ H ₁ H ₁ H ₁ H ₁ H ₂ H ₃ H	Pour toutes les buses avec 1/4" filetées mâle.	040.228. xx.yy*	-	0	-	-	-	1/4 BSPP	-	18	12	17	-	-	16 g
	2TR/216/302 308/350/548/468 679/684/652	065. 210	0	-	0	0	0	3/8 BSPP	-	18	10	17.2	11.5	-	20 g
Mamelon à souder	306/307 502/503 656/657	065. 610	0	-	0	-	•	3/4 BSPP	-	27	14	28	18	-	61 g
Mamelon à souder avec rayon (R=10/13/16/20/25 or 31 mm)	ZTR/216/302/308/350 548/468/679/684/652	065. 217. xx. yy*	-	-	0	-	-	3/8 BSPP	-	18	10	17.2	11.5	-	20 g
Hex	2TR/216/302/308 350/548/468 679/684/652	065. 215 ¹⁾	-	-	0	•	-	3/8 BSPP 3/8 BSPP	1/4 BSPP 3/8 BSPP	25 25	10	10	7	22 22	30 g 25 g
Double mamelons à souder	656/657	065. 611	-	-	0	0	-	3/4 BSPP	3/4 BSPP	35	14	18	-	32	90 g

^{*} Remplacer xx par la Matière Nr. et yy par le rayon R

Exemple de Type + Matière Nr. = Réf. Buse complète commande : 040. 270 + 1Y = 040. 270. 1Y



¹⁾ Ne pas utiliser avec clapets anti-gouttes, ni filtres.


Articulations sphériques

Orientable de 30° dans tous les sens. Pas de joint sensible à l'usure. Longues périodes de marche sans problème même avec réglages fréquents. P_{max}: 25 bar.

	Réf. Bus	se cor	nplète)							nsions					
Si	Type	Ma	atière	Nr.	Code					Įm	m]					
Pour les séries		16 Junox 303/316 16	16 808 xoul	Laiton 08	0	D ₁	D ₂	G ₁ BSPP	G ₂ BSPP	L _{G1}	L _{G2}	L	Hex ₁	Hex ₂	Hex ₃	Poids (Laiton)
Pour toutes les buses avec 1/4" filetées mâle	092. 020 092. 021	-	•	0	AD AF	-	-	1/4	1/4	12.0 12.0	11.5	60.3 58.3	27 27	27 27	17 17	60 g 80 g
Pour toutes les buses avec 3/8" filetées mâle	092. 030	-	0	0	AF	-	-	3/8	3/8	12.0	12.0	56.7	27	30	19	80 g
Pour toutes les buses avec 1/4" filetées mâle	092. 020	0	-	-	SD	20.0	15.0	-	1/4	-	11.5	64.3	-	27	17	60 g
Pour toutes les buses avec 3/8" filetées mâle	092. 030	0	-	-	SF	22.0	15.0	-	3/8	-	12.0	58.7	-	30	19	80 g
2TR/216/302/308/350 548/468/679/684/652	092. 022	-	0	0	AD	-	-	1/4	3/8	12.0	10.0	63.8	27	27	17	80 g
2TR/216/3	092. 022	-	0	0	AF	-	-	3/8	3/8	12.0	10.0	61.8	27	27	17	85 g
2TR/216/302/308/350 548/468/679/684/652	092. 022	•	-	-	SE	20.0	15.0	-	3/8	-	10.0	67.8	-	27	17	80 g

Version compacte de l'articulation sphérique pour installation étroite

Pour toutes les buses avec 1/8" filetées mâle	092. 010	-	0	0	AA	-	-	1/8	1/8	8.0	8.0	29.3	22	24	-	70 g
Pour toutes les buses avec 1/4" filetées mâle	092. 024	1	0	0	AC	-	-	1/4	1/4	12.0	12.0	44	27	27	-	140 g
Pour toutes les buses avec 3/8" filetées mâle	092. 030	-	0	0	AE	-	-	3/8	3/8	12.0	12.0	44	27	30	-	160 g

Exemple de Type + Matière Nr. + Code = Réf. Buse complète commande : 092. 020 + 16 + AD = 092. 020. 16. AD

Clapets anti-goutte / Filtres

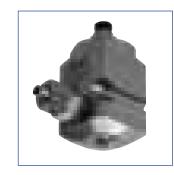
		Réf. Buse com	plète			nre	nre	Maille		Dimer			
	ဟ	Type	Mat	Nr.		uvert	ermet	M		lm	m]		
	Pour les séries		56 ⋝	Monel/Cuivre 52	Couleur	Pression d'ouverture	Pression de fermeture						gp
	8		POM	Mo	Ö	[bar]	[bar]	[mm]	H ₁	H ₂	D ₁	D ₂	Poids
	xxx.32x- xxx.44x	065.265 Bille 1.4034 Ressort 1.4310	0	-	blue	0.5–1.0	0.4-0.9	0.25	21.5	2.0	14.8	11.0	2 g
Clapet anti-goutte avec filtre p _{max} = 20 bar	xxx.48x- xxx.56x	065.266 Bille 1.4034 Resort 1.4310	0	-	red	0.4-0.5	0.35-0.45	0.65	21.5	2.0	14.8	11.0	2 g
0 111	xxx.32x- xxx.44x	065.257	0	_	blue	-	-	0.25	21.5	2.0	14.8	11.0	2 g
Filtre	xxx.48x- xxx.56x	065.256	0	-	red	-	-	0.65	21.5	2.0	14.8	11.0	2 g
Filtre	xxx.32x- xxx.44x	065.252	-	0	-	-	-	0.50	8.5	1.0	14.8	9.0	1 g

Exemple de Type + Matière Nr. = Réf. Buse complète commande : 065. 265 + 56 = 065. 265. 56

VarioSpray II Système de buses contrôlées pour la pulvérisation de très petits volumes de liquide

Applications

- Pulvérisation de vitamines
- Pulvérisation de liquides sucrés à basse viscosité
- Anti grippage
- Procédés liés à l'hygiène
- Humidification de produits
- Humidification de bandes


Une technologie innovante de pulvérisation ouvrant les portes à de nouvelles applications

La standardisation s'accroît dans tous les domaines d'activité et la demande pour des procédés de fabrication plus économiques et plus écologiques devient plus pressante. Le nouveau système de buses Lechler avec son contrôle de durée d'impulsion impressionne par sa flexibilité et offre l'avantage de pouvoir pulvériser de très petites quantités de liquide avec précision. Dans les systèmes de buses hydrauliques (monofluide), la section de passage la plus petite de la buse détermine le débit du liquide. Pour des raisons d'économie et de fabrication, il n'est pas possible de réduire cette section indéfiniment. Il y a donc des limites physiques au débit minimum d'une buse. Les buses pneumatiques sont alors utilisées pour obtenir les plus petits débits.

Les atomiseurs pneumatiques (bifluide) permettent d'atteindre de très faibles débits en utilisant de l'air.

En revanche, cette technologie connaît sa limite lorsque les volumes débités doivent varier et s'adapter aux changements des paramètres du process. Le contrôle global devient alors très complexe.

L'utilisation de l'air est également un facteur négatif sur les coûts de production, le brouillard généré et l'effet de rebond étant source de perte de liquide. Le VarioSpray II permet la pulvérisation de très petites quantités de liquide tout en utilisant des buses hydrauliques (monofluide).

Système flexible

- Variation aisée de la durée d'impulsion et de la fréquence
- Fonction nettoyage
- Système modulaire
- Signal Marche/Arrêt (par cellule de détection)

Qu'est-ce que la Modulation de durée d'impulsion

La modulation de la durée d'impulsion se réfère à la variation du signal ON /OFF à fréquence f constante. Dans notre cas, la fréquence f correspond à la valeur inverse de la période T.

Le rapport du temps ON (ton) sur le temps complet T correspond au pourcentage de la durée d'impulsion (DC= cycle de marche). Le pourcentage de la durée d'impulsion détermine le débit.

La vanne est ouverte durant la période ON (ton).

Plus le DC est court et plus le débit est réduit.

Selon la fréquence utilisée, le fonctionnement par pulsation est à peine perceptible à l'œil nu.

Plus d'informations techniques sur demande

Caractéristiques	Avantages
Débit minimum - Economie de liquide - Pas de système bi-fluide complexe et coûteux	→ Réduction des coûts → Meilleure efficacité
Fréquence jusqu'à 100 Hz - Vitesse du convoyeur variable	→ Amélioration de la productivité→ Réduction des temps de production
Contrôle du débit de 1 à 10 - Large plage de débit couverte par une seule buse	→ Pas de changement de buse
Débit variable - Réglage aisé du débit selon le produit	→ Réduction des temps de réglage
La variation du débit n'affecte pas les paramètres de pulvérisation - Angle de pulvérisation constant - Taille de gouttes constante	→ Paramètres de production constants
Le débit n'est pas contrôlé par la pression - Pas de haute pression - Configuration simple	 → Installation rapide → Maintenance peu coûteuse → Coût d'exploitation peu élevé
Faible usure de la vanne - Une seule pièce en mouvement	→ Peu d'entretien
Pas d'utilisation d'air d'atomisation - Pas de formation de brouillard - Moins de perte de liquide	 → pas de risque pour la santé → Pas de pollution de l'environnement → Réduction des coûts
Peu de risque de bouchage - Large section de passage	→ Amélioration de la production

Exemple de contrôle de débit

 $\alpha = \text{constant}$ de 10 % à 100 %

TROUVEZ D'AUTRES BUSES ET SYSTÈMES DE PULVÉRISATION POUR LE TRAITEMENT DE SURFACE DANS NOTRE CATALOGUE GÉNÉRAL ...

Au fil des ans, notre catalogue "Buses de pulvérisation et accessoires" est devenu un manuel de technologie très apprécié des professionnels. Il contient des outils précieux et des informations techniques complètes sur les buses et systèmes de pulvérisation Lechler. De nombreuses buses Lechler sont également utilisées depuis longtemps dans les applications pour le traitement de surface.

Atomiseurs pneumatiques	Série	Forme du jet	Mode alimentation liquide	Mélange des Fluides	∢	V eau [l/h]	Exemple d'application	Catalogue / Page
	166	Cône plein ou jet plat	principe de pres- sion	interne ou ex- terne	20° 45° 60° 80°	0.10 – 132.90	Humidification de l'air, refroidissement, désinfection (par ex. bouteilles), revêtement, dosage, applications de dépose.	1.5
Buses à cône plein	Série	\$	ỷ [l/min] à p = 2 l		Raccordement	Exemple d'application	on	Catalogue / Page
	460 461	45° 60° 90° 120°	0.40 – 71	1.00	1/8 BSPT 1/4 BSPT 3/8 BSPT 1/2 BSPT 3/4 BSPP 1 BSPP	lavage de l fûts, refroid saucisses, mousse, de Grandes s passage, ç	de surfaces, pouteilles et issement de abattage de	3.5
Buses à jet plat	Série	\$	V [l/min] à p = 2 l		Raccordement	Exemple d'application	on	Catalogue / Page
	610	20° 30° 45° 60° 75° 90° 120°	0.05 – 4.	00	1/8 BSPP	filtres, band cribles lubr De type co adapté à u	(par ex. surfaces, les) laveurs de fication, revêtement. mpact, bien ne installation pace limité	4.11
8	612	20° 30° 45° 60° 75° 90° 120°	0.05 – 16	6.00	1/4 BSPP	filtres, band cribles lubr De type co	(par ex. surfaces, les) laveurs de ification, revêtement. mpact, bien adapté illation dans un ité	4.13

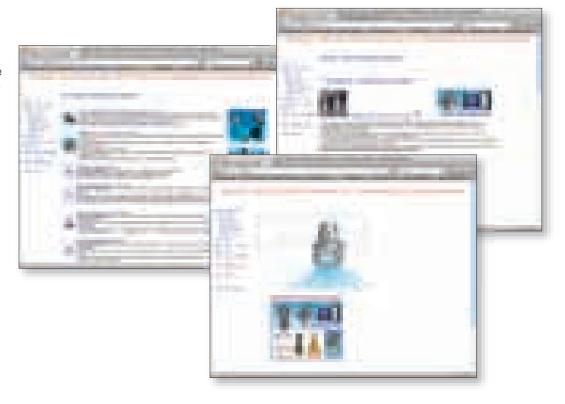
Buses à jet rectiligne	Série	ऐ [l/min]	Raccordement	Exemple d'application	Catalogue / Page
	544	0.04 – 10.00	1/8 BSPT 1/4 BSPT	Installations de nettoyage. Conditions d'écoulement optimisées. Puissance extrême du jet. Jet à concentration compacte.	5.4

.... ET DANS DIFFÉRENTES BROCHURES

Nous avons rassemblé des informations sur les buses spéciales dans leur propre brochure (voir ci-contre). Elles peuvent avoir un intérêt particulier pour les applications dans l'agro-alimentaire.

Tous les documents peuvent être téléchargés depuis notre site Web, www.lechler.fr.

Nous pouvons aussi vous faire parvenir les brochures par courrier.


Lechler VarioSpray II Système de buses contrôlées pour la pulvérisation de très petits volumes de liquide

SERVICE EN LIGNE

SUR INTERNET VOUS POUVEZ TROUVER ENCORE PLUS D'INFORMATIONS ET DE SOUTIEN DANS VOTRE TRAVAIL :

www.lechler.fr

Sur Internet, vous pouvez également trouver d'autres informations sur notre gamme complète de services, sur nos supports de travail, sur notre présence globale et bien plus encore – nous nous réjouissons de votre visite.

ET SUR http://lechler.partcommunity.com DONNÉES SUR LA CONCEPTION 3D

Les données 3D sur les buses et accessoires Lechler sont disponibles gratuitement pour votre travail de développement et de modélisation. Profitez des avantages suivants :

 Téléchargez directement et en peu de temps les plans et détails techniques de nos modèles.

- Sélectionnez simplement les produits tirés du cataloque général Lechler.
- Utilisez la fonction de prévisualisation avec photo produit et graphique 3D.
- Profitez de tous les formats de fichier 3D ordinaires disponibles.
- Utilisez gratuitement sur simple et unique enregistrement.

Avec l'étendue de son offre de service et le niveau technologique pratiqué, Lechler apporte la preuve incontestable de ses compétences et de son talent en matière de pulvérisation.

Profitez de cette offre et simplifiez-vous ainsi la tâche. Nous serons heureux de vous y aider.

LECHLER DANS LE MONDE

Lechler France Bâtiment CAP 2 66 - 72 rue Marceau F- 93100 Montreuil

Téléphone: +33 (0) 1 49 88 26 00 Téléfax: +33 (0) 1 49 88 26 09 E-maill : info@lechler.fr Internet: www.lechler.fr

Allemagne: Lechler GmbH · P.O. Box 13 23 · 72544 Metzingen / Germany · Tél. : +49 (0) 71 23 962-0 · Fax : +49 (0) 71 23 962-333 · info@lechler.de · www.lechler.de Belgique: Lechler S.A./N.V. · Avenue Mercatorlaan, 6 · 1300 Wavre · Tél. : (10) 225022 · Fax : (10) 243901 · info@lechler.be

Chine: Lechler Intl. Trad. Co. Ltd. · Beijing · Rm. 418 Landmark Tower · No. 8 Dong San Huan Bei Lu · Tél. : (86) 1084537968, Fax : (86) 1084537458 · info@lechler.com.cn Finlande: Lechler Oy · Jäspilänkatu 18 · 04250 Kerava · Tél. : (358) 207856880 · Fax : (358) 207856881 · info@lechler.fi Grande Bretagne: Lechler Ltd. · 1 Fell Street, Newhall · Sheffield, S9 2TP · Tél. : (0114) 2492020 · Fax : (0114) 2493600 · info@lechler.com Inde: Lechler (India) Pvt. Ltd. · Plot B-2 · Main Road · Wagle Industrial Estate · Thane (W) · 400604 · Tél. : (22) 40634444 · Fax : (22) 40634497 · lechler@lechlerindia.com Suède: Lechler AB · Spärrgatan 8 · SE-653 41 Karlstad · Tél. : (46) 54137030 · Fax : (46) 54 13 70 31 · info@lechler.se Espagne: Lechler SA. · Avda. Pirineos 7 · Oficina B7, Edificio Inbisa 1 · 28700 San Sebastián de los Reyes, Madrid · Tél. : (34) 916586346 · Fax : (34) 916586347 · info@lechler.es

USA: Lechler Inc. · 445 Kautz Road · St. Charles, IL. 60174 · Tél.: (630) 3776611 · Fax: (630) 3776657 · info@lechlerUSA.com