Especially low flow rates. Parabolic liquid distribution.

Applications:
Belt lubrication, moistening, spraying of food products, moisturization of rollers, oiling, lubrication of metal sheets.

Operating pressure range:
1 to 5 bar

Recommended operating pressure:
3 bar

Viscosity:
The nozzles can be operated with viscous media, e.g. transmission fluid (max. approx. 200 mPas). However the spray angle decreases.

Return valve with filter:
- Prevents dripping and saves medium
- Size of filter mesh: 0.08 mm (200 mesh)

Opening pressure:
- 095.016.53.11.00: approx. 0.5 bar
- 095.016.53.14.63: approx. 2.8 bar

Closing pressure:
- approx. 0.3 bar
- approx. 1.6 bar

Spray angle:

<table>
<thead>
<tr>
<th>Spray angle</th>
<th>Ordering no.</th>
<th>Colour</th>
<th>E [mm]</th>
<th>V̇ [l/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°</td>
<td>652.145</td>
<td>green</td>
<td>0.12</td>
<td>0.04** 0.05 0.06 0.08</td>
</tr>
<tr>
<td></td>
<td>652.165</td>
<td>black</td>
<td>0.14</td>
<td>0.05** 0.07 0.08 0.10</td>
</tr>
<tr>
<td></td>
<td>652.185</td>
<td>red</td>
<td>0.16</td>
<td>0.06** 0.08 0.10 0.13</td>
</tr>
<tr>
<td></td>
<td>652.215</td>
<td>blue</td>
<td>0.20</td>
<td>0.08** 0.11 0.14 0.18</td>
</tr>
<tr>
<td></td>
<td>652.245</td>
<td>orange</td>
<td>0.30</td>
<td>0.12** 0.16 0.20 0.26</td>
</tr>
<tr>
<td></td>
<td>652.275</td>
<td>brown</td>
<td>0.30</td>
<td>0.16** 0.22 0.27 0.35</td>
</tr>
<tr>
<td>120°</td>
<td>652.187</td>
<td>grey</td>
<td>0.20</td>
<td>0.06** 0.08 0.10 0.13</td>
</tr>
<tr>
<td></td>
<td>652.247</td>
<td>black</td>
<td>0.20</td>
<td>0.12** 0.16 0.20 0.26</td>
</tr>
<tr>
<td></td>
<td>652.277</td>
<td>black</td>
<td>0.30</td>
<td>0.16** 0.22 0.27 0.35</td>
</tr>
</tbody>
</table>

* E = narrowest free cross section
* Housing POM, nozzle insert 303 SS
** Differring spray pattern.
Subject to technical modifications.

Position 1
Filter with return valve

Position 2
Gasket

Position 3
Nozzle

Position 4
Cap nut

Conversion formula for the above series: \(\dot{V}_2 = \dot{V}_1 \cdot \sqrt{\frac{p_2}{p_1}} \)