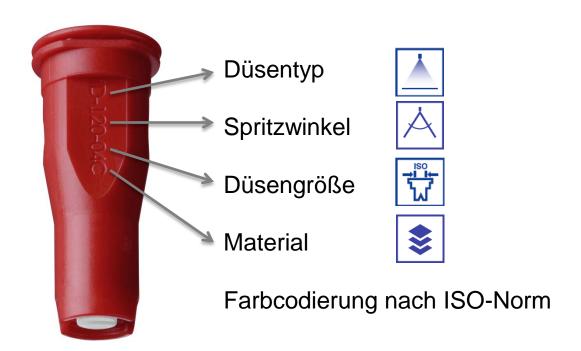
Entwicklungen in der Düsentechnik

17./18. Februar 2016


Dr. Robert Heinkel, Lechler GmbH, Metzingen

Entwicklungen in der Düsentechnik

- Einführung
- Pflanzenbauliche Anforderungen
 - Bedeckungsgrad / Anlagerung
 - Zielorientierte Applikation Zweidüsenstrategie, Unterblattspritzung
- Arbeitswirtschaft
 - Erhöhung der Flächenleistung
 - Variable Düsensteuerung
 - Unterblattspritzung
- Umwelt
 - Abstandsauflagen
 - Feldrandbehandlung
 - Mischbestückung
 - Zielorientierte Applikation
- Anwenderschutz
- Zusammenfassung

Einführung

Anforderungen an Pflanzenschutz-Düsen Kennzeichnung

Land. Technik für Profis 2016

Einführung

Anforderungen an Pflanzenschutz-Düsen

Querverteilung

Variationskoeffizient (= mittlere Abweichung vom Mittelwert) < 7% (JKI Richtlinie 1-1.0/ 3.2.2 und Messung nach ISO 5682-2)

Foto: Zg-raiffeisen.de

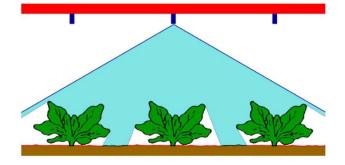
Volumenstrom

max. zulässige Volumenstromtoleranz je Düse +/- 5% (JKI Richtlinie 1-1.0/ 3.4.1 und Messung nach ISO 5682-2)

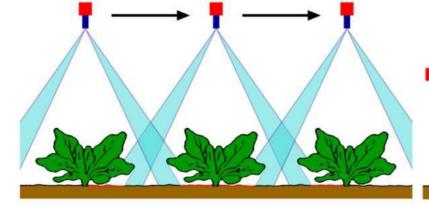
Foto: Hauer, BW Mold

Bedeckungsgrad / Anlagerung

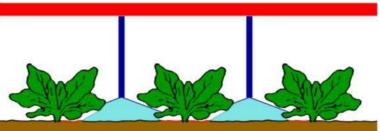
Wirkmechanismus des Pflanzenschutzmittels?

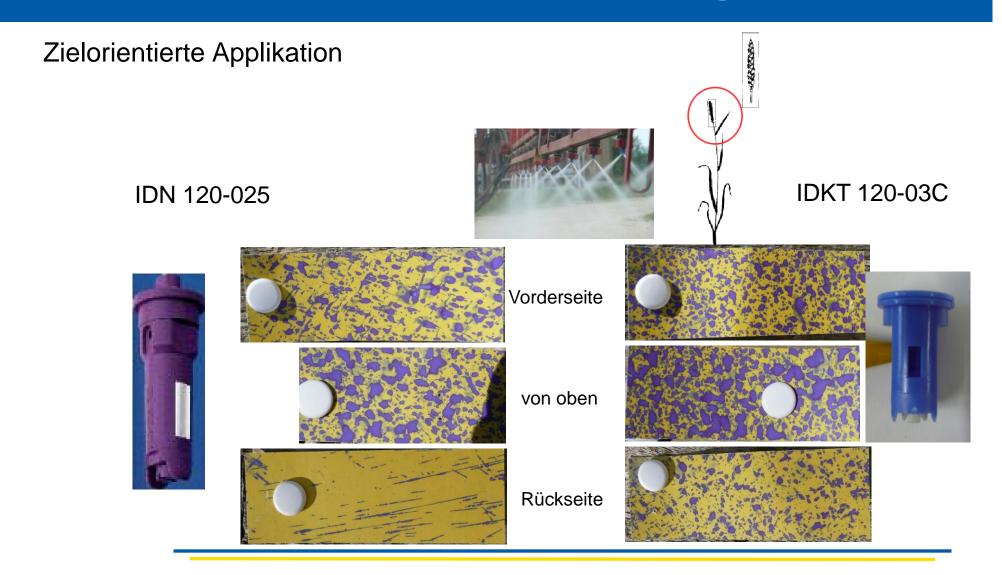


- Zielflächen?
 - Gräser, Beikräuter
 - Blattbeschaffenheit (glatt, haarig, wachsig)
 - Blattorientierung Tageszeit



Zielorientierte Applikation


Spritzschatten vermeiden



Spritzschatten beim Einsatz normaler Flachstrahldüsen

Unterblattspritzung mit Dropleg^{UL}

Zielorientierte Applikation – Zweidüsenstrategie

Zielorientierte Applikation – Verbesserte Anlagerung an vertikalen Zielflächen durch asymmetrische Strahlaufteilung bei höheren

Fahrgeschwindigkeiten 90° in Fahrtrichtung 120° in Fahrtrichtung nach hinten Winterweizen BBCH 55 (40 % Volumenstromanteil) (60 % Volumenstromanteil) Ähre: 8 km/h - 230 l/ha Ähre: 12 km/h - 155 l/ha V/H 14 14 % 12 % 12 **Bedeckungsgrad Bedeckungsgrad** 10 10 V/H V/H 2,8 0.5 V/H 2,5 ID 03 IDTA 03 IDKT 04 ID 03 **IDTA 03** IDKT 04 Vertical Front Vertical Back Vertical Front Vertical Back Quelle: Research Institute Skierniewice, Grzegorz Doruchowski

Dropleg^{UL}

- Passend für alle Gestänge
- ✓ Pflanzenschonend, da frei pendelnd quer zur Pflanzenreihe
- ✓ Leicht und flexibel
- Witterungsunabhängig durch abdriftarme Applikation im Bestand
- Optimale Pflanzenschutzmittelanlagerung seitlich und von unten an
 - Blattunterseiten
 - und Stängel

... für eine bessere und sicherere Wirkung!

Max. 8,0 bar

Anwendung:

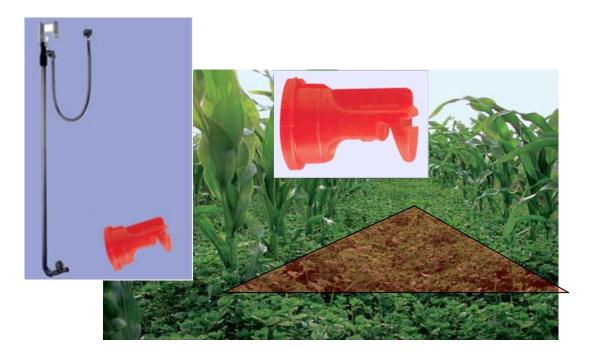
Anwendungen im Mais mit Dropleg^{UL}

Späte Unkrautbekämpfung und Flüssigdüngung

mit 140° FT-Zungendüsen

Mais: Mindererträge nach Sulfonylharnstoff-Einsatz!

Bei der Herbizidbehandlung von Mais sind Sulfonylharnstoffe (SHS) eine wichtige Wirkstoffklasse. Beim Einsatz drohen aber Mindererträge, wie die LWK Niedersachsen in 6-jährigen Versuchen (2004 bis 2009) ermittelt hat.


In diesen Versuchen wurde die Wirkung von SHS auf die Wuchslänge und den TM-Ertrag von Silomais geprüft. Eingesetzt wurden MaisTer, Cato und Motivell (höchste Aufwandmengen), Task (Rimsulfuron + Dicamba) sowie Motivell plus Artett. Die Anwendung erfolgte im 6- bis 7-Blattstadium bei normaler Witterung in gängige Maissorten. Vorbehandlungen gegen dikotyle Unkräuter erfolgten maisschonend im Vorauflauf. Trockenstress trat nicht auf. Hier die Ergebnisse:

■ Bonituren im 10-Blattstadium zeigten Wuchsdepressionen und Blattaufhellungen. Optisch wuchsen sich die Schäden bis zur Ernte zwar heraus, dennoch reagierten die Erträge.

- MaisTer drückte den TM-Ertrag im Durchschnitt um 6,9%, bei Cato lag der TM-Verlust bei 6%. Motivell senkte den Ertrag dagegen nur um 0,6%.
- Bei zwei Drittel Motivell plus einer Teilmenge Artett betrug der TM-Verlust 4,2 %. Ähnliche Schäden wies eine Teilmenge Task auf.
- In den Versuchsjahren war die Schäden unterschiedlich. Im Mittel reagierte der Mais mit 4,2 % weniger TM-Ertrag.

Fazit: Der Einsatz von SHS kann die Erträge erheblich schmälern, insbesondere bei kritischer Witterung und Zusatz weiterer Herbizide. Setzen Sie diese Mittelgruppe daher nur gezielt bei stärkerer Verungrasung ein.

Manfred Kettel, LWK Niedersachsen, Nienburg

→ größeres Zeitfenster für Pflanzenschutz und Düngemaßnahmen

Quelle: topagrar 08 2010

Anwendungen im Mais mit Dropleg^{UL}

- Späte AHL-Düngung
 - mit FL-Flüssigdüngerdüsen (nur Flüssigdüngung)

Quelle: NL 4 2012

→ größeres Zeitfenster für Düngemaßnahmen

Erhöhung der Flächenleistung

Gezogene Feldspritze 4500 l, 27 m

km/h	I/ha	ha/h
8	200	12,0
8	100	15,5
16	200	17,8
16	100	24,1

Parameter

Behältergröße 4500 I

Gestängebreite 27 m

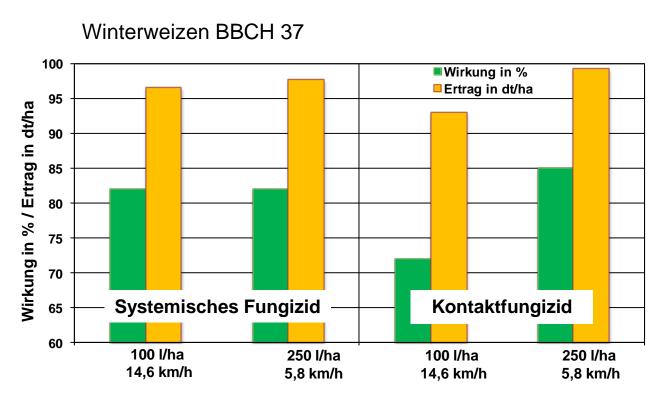
Aufwandmenge 200 I/ha

Füllleistung 200 l/min

Transportstrecke 2 km

Transportgeschwindigkeit 20 km/h

Schlaglänge 500 m


Servicezeit 10 %

Höhere Fahrgeschwindigkeit erfordert

- stabiles Gestänge
- verbesserte Achs- und Gerätefederung
- Gestängehöhenführung

Wasseraufwandmenge und Fahrgeschwindigkeit

Druck 4,5 bar; Bonitur 42 DAA, Fahnenblatt; Kontrolle 35% Befall mit SEPTTR

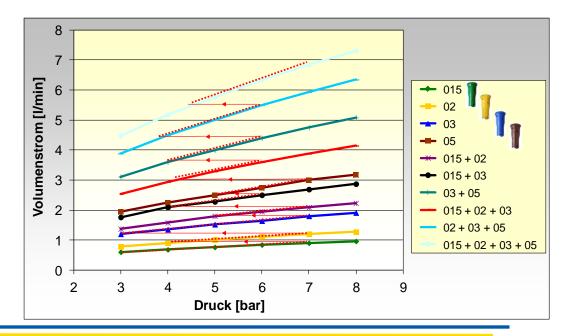
Empfehlung Kontaktwirkstoff:

- → Wassermenge nicht senken
- → Injektordüse mit empfohlenem Druck einsetzen

Quelle: Syngenta

Variable Ausbringmengensteuerung

- Wechselnde Fahrgeschwindigkeiten
- Teilflächenspezifische Anwendungen
- Abstandsauflagenmanagement


Mehrfachdüsenträger mit Ventilen

- Einfachdüsenträger z.B. PSV
- Mehrfachdüsenträger z.B. VarioSelect®

Praktiker-Meinung zur Unterblattspritzung

Feuerwehrmaßnahme im Mais

einen weiteren Vorteil: Das Unterblattverfahren eröffnet dem Lohnunternehmen ein erheblich größeres Zeitfenster für die Durchführung der Pflanzenschutzmaßnahmen im Mais, welche nun flexibel vom Vorauflauf bis hin zu einer Pflanzenhöhe von 1,30 m erfolgen können.

Quelle: Lohnunternehmen 9-2010

Abstandsauflagen

NW-Auflagen (NW 605-609)
Schutz von Wasserorganismen

Abstandsauflagen bei Einsatz verlustmindernder Düsen-/ Gerätetechnik

NT-Auflagen (NT 101-109)

Schutz terrestrischer Nichtzielorganismen

Abstandsauflagen entlang vonSäumen breiter 3,0 m(inkl. Waldgrenzen und bei unzureichendem Anteil Kleinstrukturen)

Abdriftminderungsklassen 50/75/90/95%

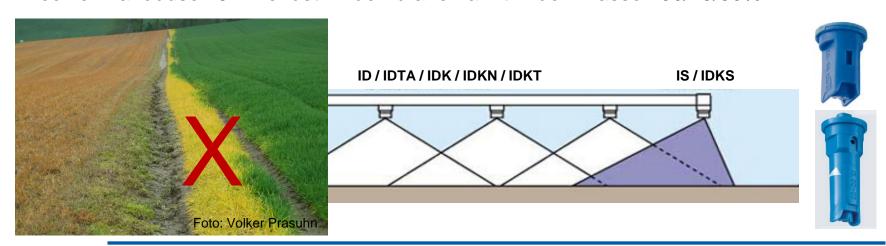
Auszug aus...

JKI-Verzeichnis "Verlustmindernde Geräte"

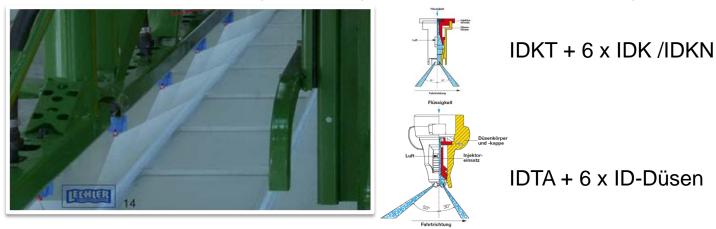
Lechler GmbH Agrardüsen und Zubehör Postfach 13 23 72544 Metzingen / Germany Telefon (0 71 23) 962-0 Telefax (0 71 23) 962-480

E-Mail: info@lechler.de Internet: www.lechler-agri.com

Abdrift- minderungs- klasse	Düsentyp/ -größe	Verwendungs- bestimmungen	Ausbringmenge bei 5 bis 10 km/h
ש 95%	PRE 130-05	1,5 bis 5,0 bar 1	190 bis 590 l/ha
0070	ID-120-025 POM/C (ID3)	2,0 bis 2,5 bar	100 bis 220 l/ha
	ID-120-03 POM (ID3)	2,0 bis 3,0 bar	120 bis 290 l/ha
	ID-120-03 C (ID3)	2,0 bis 2,5 bar	120 bis 260 l/ha
	ID-120-04 POM (ID3)	2,0 bis 3,0 bar	160 bis 380 l/ha
	ID-120-04 C (ID3)	2,0 bis 2,5 bar	160 bis 340 l/ha
	ID-120-05 POM (ID3)	2,0 bis 3,0 bar	190 bis 470 l/ha
	ID-120-05 C (ID3)	2,0 bis 4,0 bar	190 bis 550 l/ha
	IS 80-025 POM mit IDN 120-025 POM	2,0 bar	Einsatz nur als Randdüse
NEU	IS 80-025 POM mit ID-120-025 POM/C (ID3)	2,0 bis 2,5 bar	Einsatz nur als Randdüse
14-	IS 80-03 POM mit IDN 120-03 POM	2,0 bar	Einsatz nur als Randdüse
	IS 80-03 POM mit ID-120-03 POM (ID3)	2,0 bis 3,0	Einsatz nur als Randdüse
	IS 80-03 POM mit ID-120-03 C (ID3)	2,0 bis 2,5 bar	Einsatz nur als Randdüse
	IS 80-04 POM mit ID-120-04 POM (ID3)	2,0 bis 3,0	Einsatz nur als Randdüse
	IS 80-04 POM mit ID-120-04 C (ID3)	2,0 bis 2,5	Einsatz nur als Randdüse
	IS 80-05 POM mit ID-120-05 POM (ID3)	2,0 bis 3,0	Einsatz nur als Randdüse
	IS 80-05 POM mit ID-120-05 C (ID3)	2,0 bis 4,0	Einsatz nur als Randdüse
	IS 80-05 POM mit ID 120-05 POM/C (ID3)	2,0 bar	Einsatz nur als Randdüse
	IDN 120-025 POM	2,0 bar	100 bis 200 l/ha
	IDN 120-03 POM	2,0 bar	120 bis 230 l/ha
NEU	ID 120-05 POM/C	2,0 bar	190 bis 390 l/ha
	PRE 130-05 POM	1,5 bis 6,0 bar 1	190 bis 630 l/ha
90%	IDKT 120-02 POM	1,5 bar	70 bis 130 l/ha
	IDKT 120-025 POM	1,5 bar	85 bis 170 l/ha
	IDKT 120-03 POM	1,0 bis 1,5 bar	100 bis 200 l/ha
	IDKT 120-04 POM/C	1,0 bar	110 bis 220 l/ha
	IDKT 120-05 POM/C	1,0 bar	140 bis 280 l/ha
	IDKT 120-06 POM	1,0 bar	160 bis 330 l/ha
_	IDKN 120-03 POM	1,0 bar	80 bis 170 l/ha
	IDKN 120-04 POM	1,0 bar	110 bis 220 l/ha
	IDK 120-04 C	1,5 bar	130 bis 270 l/ha
	IDK 120-05 POM	1,0 bar	140 bis 280 l/ha
	IDK 120-06 POM	1,0 bar	160 bis 330 l/ha



Abdrift- minderungs- klasse	Düsentyp/ -größe	Verwendungs- bestimmungen	Ausbringmenge bei 5 bis 10 km/h
	ID-120-025 POM/C (ID3)	2,0 bis 4,0 bar	100 bis 280 l/ha
	ID-120-03 POM/C (ID3)	2,0 bis 4,0 bar	120 bis 330 l/ha
	ID-120-04 POM/C (ID3)	2,0 bis 6,0 bar	160 bis 530 l/ha
	ID-120-05 POM (ID3)	2,0 bis 6,0 bar	190 bis 670 l/ha
	ID-120-05 C (ID3)	2,0 bis 8,0 bar	190 bis 770 l/ha
	IS 80-025 POM mit IDN 120-025 POM	2,0 bis 3,0 bar	Einsatz nur als Randdüse
NEU	IS 80-025 POM mit ID-120-025 POM/C (ID3)	2,0 bis 4,0 bar	Einsatz nur als Randdüse
	IS 80-03 POM mit IDN 120-03 POM	2,0 bis 3,5 bar	Einsatz nur als Randdüse
	IS 80-03 POM mit ID-120-03 POM/C (ID3)	2,0 bis 4,0 bar	Einsatz nur als Randdüse
	IS 80-04 POM mit ID-120-04 POM/C (ID3)	2,0 bis 6,0 bar	Einsatz nur als Randdüse
	IS 80-05 POM mit ID-120-05 POM (ID3)	2,0 bis 6,0 bar	Einsatz nur als Randdüse
	IS 80-05 POM mit ID-120-05 C (ID3)	2,0 bis 8,0 bar	Einsatz nur als Randdüse
	IDN 120-025 POM	2,0 bis 3,0 bar	100 bis 240 l/ha
	IDN 120-03 POM	2,0 bis 3,5 bar	120 bis 270 l/ha
	ID 120-03 POM/C	3,0 bar	140 bis 290 l/ha
	ID 120-04 POM/C	3,0 bar	190 bis 380 l/ha
	ID 120-05 POM/C	2,0 bis 8,0 bar	190 bis > 500 l/ha
75 %	PRE 130-05 POM	1,5 bis 8,0 bar	190 bis 710 l/ha
	IS 80-03 POM mit ID 120-03 POM/C	3,0 bar	Einsatz nur als Randdüse
	IS 80-04 POM mit ID 120-04 POM/C	3,0 bar	Einsatz nur als Randdüse
NEU	IS 80-05 POM mit ID 120-05 POM/C	2,0 bis 8,0 bar	Einsatz nur als Randdüse
14-	IDKT 120-02 POM	1,5 bis 3,0 bar	70 bis 190 l/ha
	IDKT 120-025 POM	1,5 bis 2,0 bar	85 bis 190 l/ha
	IDKT 120-03 POM	1,0 bis 2,0 bar	100 bis 230 l/ha
NEU	IDKT 120-03 C	1,5 bar	100 bis 200 l/ha
	IDKT 120-04 POM/C	1,0 bis 1,5 bar	110 bis 270 l/ha
	IDKT 120-05 POM/C	1,0 bis 1,5 bar	140 bis 330 l/ha
	IDKT 120-06 POM	1,0 bis 2,0 bar	160 bis 460 l/ha
14-	IDKN 120-03 POM	1,0 bis 1,5 bar	80 bis 200 l/ha
	IDKN 120-04 POM	1,0 bis 1,5 bar	110 bis 270 l/ha


Bundesamts für Verbraucherschutz und Lebensmittelsicherheit (BVL)

Anwendung von Pflanzenschutzmitteln mit Feldspritzgeräten (16.10.2013)

- Verwendung von Randdüsen (IS, IDKS) im Randbereich von Zielflächen
- Passende Kombination bei Doppelflachstrahldüsen IDKT und IDTA
- Assymetrische Doppelflachstrahldüse erlaubt durch gleiche Strahlbreite randscharfe Applikation in Verbindung mit IS-Düsen
- Mitbehandlung der angrenzenden Fläche ist weitestgehend zu verhindern
- Lechler Randdüsen JKI-verlustmindernd anerkannt in den Klassen 90/75/50%

Anspritzen von Geräteteilen vermeiden
 JKI anerkannte Mischbestückung im Gestängemittelteil mit Flachstrahldüsen gleicher Größe

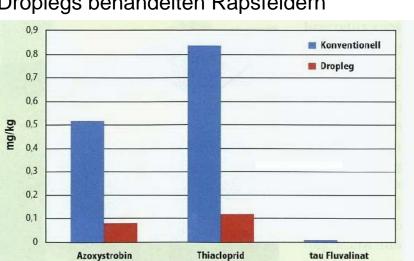

Randbehandlung bei asymmetrischen Doppelflachstrahldüsen

ca. 36 cm Überspritzung je Seite bei gleichem Strahlwinkel asymmetrischer Doppelflachstrahldüsen

Blütenbehandlung in Raps

Quelle: LTZ Augustenberg Klaus Schmidt 2013

- → Abdriftreduktion bis 95% möglich
- → Applikationen witterungsunabhängiger
- → größerer Applikationszeitraum


Land. Technik für Profis 2016

Umwelt

Nützlingsschonender Pflanzenschutz während der Rapsblüte

Rückstände im Pollen heimkehrender Bienen aus konventionell und mit Droplegs behandelten Rapsfeldern

Quelle: Der Pflanzenarzt 04/2014

→ <u>Keine</u> ertragsrelevanten Beschädigungen an den Rapspflanzen

Anwenderschutz

Gefahr der Anwenderkontamination

- Reinigen und Demontieren der Düsen
- Studien verweisen auf die Notwendigkeit des Tragens von Schutzhandschuhen
- IDTA "Düse-Kappe-System"
 - Düse liegt gut und griffgünstig in der Hand
 - keine aufwendiges Einführen der Düse in die Bajonettkappe
 - Demontage mit Schutzhandschuhen über außenliegende Schieber
 - Schieber am Injektor dienen als Fixierhilfe

Zusammenfassung

- Zielflächenorientierte Auswahl der Düsentechnik
 - Flachstrahl
 - Doppelflachstrahl
 - Dropleg^{UL}
- Steigerung der Flächenleistung
 - geeignete Düsenbauarten ID, IDTA
 - in Kombination mit variabler Ausbringmengensteuerung
- Dropleg^{UL}
 - größeres Zeitfenster für Pflanzenschutz und Düngemaßnahmen
 - Abdriftarm im Bestand
 - Nützlingsschonend
- Doppelflachstrahldüsen in Mischbestückung im Gestängemittelteil
- Feldrandbehandlung mit Randdüsen
 - echte Randbehandlung bei asymmetrischen Doppelflachstrahldüsen
- Anwenderschutz Demontierbarkeit von Düsen mit Schutzhandschuhen